首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of nonstoichiometry and ordering on the lattice constant a B1 of the basic lattice of vanadium carbide VC y (0.65 < y < 0.875) is studied. A change in the lattice constant of disordered carbide VC y at the reduction of the carbon content is considered using the direction of static displacements of atoms near a vacancy. A model for the calculation of the basic lattice constant a B1 of vanadium carbide is proposed taking into account nonstoichiometry and ordering. It is shown that the ordering of vanadium carbide VC y with the formation of V6C5 and V8C7 superstructures results in an increase in the basic lattice constant as compared to disordered carbide.  相似文献   

2.
It is demonstrated that 50% substitution of vanadium for molybdenum in the pyrochlore lattice of the complex oxide Y2(V x Mo1 ? x )2O7 results in a transition from the spin-glass ground state (at x = 0) to the ferromagnetic state in Y2VMoO7 (a = 10.1645(2) Å, T C = 55 K). The Gd2V0.67Mo1.33O7 compound (a = 10.2862(3) Å) is a ferromagnet with T C (84 K) exceeding that of undoped Gd2MnO2O7.  相似文献   

3.
The monoclinic (space group C2/m) superstructure of the suboxide V14O6, which is formed as a result of the atomic and vacancy ordering of the tetragonal solid solution of oxygen in vanadium, is investigated using X-ray diffraction and symmetry analysis. The monoclinic suboxide V14O6 is observed in the vanadium oxide samples VO0.57, VO0.81, and VO0.86 synthesized at 1770 K and the samples VO y (0.87 ≤ y ≤ 0.98) additionally annealed at 1470 K after the synthesis. It is established that the channel of the disorder-order phase transition associated with the formation of the monoclinic suboxide V14O6 includes six superstructure vectors belonging to three non-Lifshitz stars of one type {k 1}. The distribution function of the oxygen atoms in the monoclinic superstructure of the suboxide V14O6 is calculated. It is demonstrated that the displacements of vanadium atoms distort the body-centered tetragonal metal sublattice, thus preparing the formation of the facecentered cubic sublattice and the transition from the suboxide V14O6 to the cubic vanadium monoxide with the B1 structure.  相似文献   

4.
Experimental results are presented on measurements of the crystal structure and heat capacity of nonstoichiometric cubic vanadium carbonitrides VCxNy (x + y = 0.85) in the region of disorder-order phase transitions. It is found that ordered phases V6(C,N)5□ and V8(C,N)7□ with the structures of the V6C5 and V8C7 types form in vanadium carbonitrides at a temperature of ~1100 K through the first-order phase transition mechanism. The channels of disorder-order transitions are determined. It is found that, in the nonmetal sublattice of the detected ordered phases, C and N atoms form one sublattice and structural vacancies □ form another sublattice. C and N atoms are randomly distributed in their sublattice.  相似文献   

5.
A. I. Gusev 《JETP Letters》2009,90(3):191-196
The influence of the temperature, concentration, and distribution of structure vacancies of the carbon sublattice on the electric resistivity ρ of nonstoichiometric VC y vanadium carbide (0.66 ≤ y ≤ 0.875) has been studied in the temperature range of 300–1200 K. The symmetry and structure characteristics of the ordered V6C5 and V8C7 phases formed owing to low-temperature annealing on various sections of the homogeneity region of the VC y carbide. The dependence of the residual electric resistivity on the content of the disordered vanadium carbide is explained by the atom-vacancy interaction and the change in the carrier concentration in the homogeneity region of VC y .  相似文献   

6.
The atom-vacancy ordering of cubic vanadium monoxide VO1.29, which has basis cubic structure B1 and structural vacancies in the metal sublattice, has been studied using the x-ray diffraction method. It has been shown that the formation of the tetragonal (space group I41/amd) ordered phase V52O64 of cubic vanadium monoxide VOy proceeds as a first-order phase transition through the disorder-order channel including 22 nonequivalent superstructure vectors of four stars {k 10}, {k 4}, {k 3}, and {k 2}. The distribution function of the vanadium atoms in the V52O64 tetragonal superstructure has been calculated.  相似文献   

7.
The elastic moduli and elastic constants of the ternary semiconductor alloy Al y Ga1-yAs at finite temperature have been investigated using the statistical moment method. The Young, shear, bulk moduli and elastic constants C11, C12, C44 of the zinc-blende Al y Ga1?yAs crystal are calculated as functions of Al composition and temperature. Numerical calculations have been performed and compared with those of the experimental and other theoretical results showing the reasonable agreements. Our study shows that elastic moduli and C11, C12 constants of zinc-blende Al y Ga1?yAs alloy are decreasing functions of the temperature and Al composition; C44 constant is a decreasing function of the Al composition.  相似文献   

8.
The characteristics determining different contributions to the magnetic susceptibility at T > T C (Pauli susceptibility, coherence length at T = 0, and Curie constant) as functions of the degree of structural disorder have been analyzed for high-temperature superconducting YBa2Cu3O y samples ( y ≈ 6.92, T C ≈ 92 K) with micrometer and submicron average grain sizes D av. It is shown that the decrease in these characteristics, which is observed in fine-grained samples with a decrease in D av, occurs in various ways, depending on the number and type of oxygen vacancy ordering in chain planes.  相似文献   

9.
We use the spin-rotation-invariant Green’s function method as well as thehigh-temperature expansion to discuss the thermodynamic properties of the frustratedspin-S J 1-J 2 Heisenbergmagnet on the body-centered cubic lattice. We consider ferromagnetic nearest-neighborbonds J 1<0 and antiferromagnetic next-nearest-neighbor bonds J 2 ≥ 0 andarbitrary spin S. We find that the transition point\hbox{$J_2^c$}J2cbetween the ferromagnetic ground state and theantiferromagnetic one is nearly independent of the spin S, i.e., it is very closeto the classical transition point\hbox{$J_2^{c,{\rm clas}}= \frac{2}{3}|J_1|$}J2c,clas=23|J1|. At finite temperatures we focus on the parameterregime\hbox{$J_2<J_2^c$}J2<J2cwith a ferromagnetic ground-state. We calculate theCurie temperature T C (S, J 2)and derive an empirical formula describing the influence of the frustration parameterJ 2 and spin S on T C . We find that theCurie temperature monotonically decreases with increasing frustration J 2, where veryclose to\hbox{$J_2^{c,{\rm clas}}$}J2c,clasthe T C (J 2)-curveexhibits a fast decay which is well described by a logarithmic term\hbox{$1/\textrm{log}(\frac{2}{3}|J_1|-J_{2})$}1/log(23|J1|?J2). To characterize the magnetic ordering below and aboveT C , we calculate thespin-spin correlation functions ?S 0 S R ?, the spontaneous magnetization, the uniform static susceptibilityχ 0 as well as the correlation lengthξ.Moreover, we discuss the specific heat C V and the temperaturedependence of the excitation spectrum. As approaching the transition point\hbox{$J_2^c$}J2csome unusual features were found, such as negativespin-spin correlations at temperatures above T C even though theground state is ferromagnetic or an increase of the spin stiffness with growingtemperature.  相似文献   

10.
The magnetization M(H) in the superconducting state, dc magnetic susceptibility χ(T) in the normal state, and specific heat C(T) near the superconducting transition temperature T c have been measured for a series of fine-crystalline YBa2Cu3O y samples having nearly optimum values of y = 6.93 ± 0.3 and T c = (91.5 ± 0.5) K. The samples differ only in the degree of nanoscale structural inhomogeneity. The characteristic parameters of superconductors (the London penetration depth and the Ginzburg–Landau parameter) and the thermodynamic critical field H c are determined by the analysis of the magnetization curves M(H). It is found that the increase in the degree of nanoscale structural inhomogeneity leads to an increase in the characteristic parameters of superconductors and a decrease in H c(T) and the jump of the specific heat ΔC/T c. It is shown that the changes in the physical characteristics are caused by the suppression of the density of states near the Fermi level. The pseudogap is estimated by analyzing χ(T). It is found that the nanoscale structural inhomogeneity significantly enhances and probably even creates the pseudogap regime in the optimally doped high-T c superconductors.  相似文献   

11.
Electron paramagnetic resonance (EPR) studies have been performed with the aim of determining the valence state and local crystal structure of the nearest environment of vanadium ions in the initial, charged, and discharged samples of the cathode material NaxV2(PO4)3 (1 ≤ x ≤ 3). It has been found that the charged sample (x = 1) is characterized by an intense signal corresponding to V4+ ions located in a highly distorted octahedral crystal field. An EPR signal with the g-factor close to the g-factor of the V4+ ion has also been observed in the initial sample (x = 3), where the intensity of the resonance signal is one order of magnitude lower than that in the charged sample. It has been revealed that the resonance signal under consideration is associated with the formation of antisite defects when a part of vanadium ions are located in sites of sodium ions. It has also been found that the intensity of this signal increases after a complete charge–discharge cycle (x = 3).  相似文献   

12.
The energies of formation of vacancies in the carbon and silicon sublattices, the independent elastic constants, the all-round compression, shear and Young’s moduli, and the anisotropy coefficients are determined for the complete and nonstoichiometric cubic phases of 3C-SixCy (x, y = 1.0–0.75) by ab initio methods of the band theory. In the formalism of the density functional perturbation theory (DFPT), the phonon dispersion dependences are obtained for these phases (the comparison with the experiment is given for the complete phase). It is shown that the mechanical characteristics of the phases become strongly anisotropic upon the transition from 3C-SiC0.875 to 3C-SiC0.75. It is established from the analysis of the phonon dispersion curves that the 3C-SiC0.875 and 3C-SiC0.75 phases, in contrast to the complete 3C-SiC phase, are dynamically unstable at T = 0 K.  相似文献   

13.
The results of x-ray structural studies of the [N(C2H5)4]2CdBr4 crystal at low temperatures are presented. The unit cell parameters and the thermal expansion coefficients along the main crystallographic directions are measured at temperatures in the range from 90 to 320 K. The integrated intensities of the diffraction reflections are investigated as a function of the temperature. It is shown that the curves a = f(T), c = f(T), I 500 = f(T), and I 006 = f(T) at temperatures T 1 ≈ 174 K and T 2 ≈ 226 K exhibit anomalies in the form of abrupt changes in the lattice parameters and the diffraction reflection intensities. This indicates that the [N(C2H5)4]2CdBr4 crystal undergo phase transitions at these temperatures. Moreover, there is an anomaly in the form of a small maximum at the temperature T 3 = 293 K.  相似文献   

14.
The EPR spectra of Cu2+ ions (2 D 5/2) located at two structurally nonequivalent positions Cu1 and Cu2 in crystals of lithium heptagermanate Li2Ge7O15 are recorded. The angular dependences of the EPR spectrum are measured in the paraelectric phase of the Li2Ge7O15 compound (T = 300 K). The components of the g factor and the hyperfine interaction tensor A are determined, and the orientation of the magnetic axes with respect to the crystallographic basis is established. The EPR spectra are recorded in the temperature range in the vicinity of the temperature T C = 283 K of the transition from the paraelectric phase to the ferroelectric phase. The position symmetry of the Cu1 and Cu2 centers is determined at temperatures above and below the phase transition temperature T C . The localization of paramagnetic centers in the structure is discussed, An analysis of the results obtained demonstrates that the Cu1 and Cu2 centers in the Li2Ge7O15 crystal lattice replace lithium ions located at two structurally nonequivalent positions with the symmetries described at temperatures above T C by the triclinic C i and monoclinic C 2 point groups, respectively.  相似文献   

15.
A comparative analysis of the results of the X-ray and Mösbauer studies of the high-temperature superconductor (HTSC) YBa2Cu3O y and YBa2Cu3 ? x 57Fe x O y (x = 0.015, T c ≈ 91.5 K) samples with different average grain sizes <D> in the micron and submicron ranges has been performed. The regularities in the change in the lattice parameter c and in the degree of occupation of different oxygen sites in the CuOδ chain planes taking place at the decrease in <D> have been studied. The quantitative interrelation between the parameter c and the oxygen content δ in the CuOδ planes exceeding the amount of the mobile oxygen due to the interplane oxygen redistribution is established.  相似文献   

16.
The charge storage behavior of nanostructures based on Si1?x Ge x (0 ≤ x ≤ 1) nanocrystals (NCs) in an Al2O3 matrix was investigated. The structures have been grown by RF magnetron sputtering and subsequently annealed at temperatures ranging from 700 °C to 1000 °C for 30 min in nitrogen ambient. The stoichiometry of the SiGe NCs and the alumina crystalline structure were found to be significantly dependent on the RF power and the annealing temperature. The sizes of the SiGe NCs and their distribution were investigated by grazing incidence small angle X-ray scattering (GISAXS). The capacitance-voltage (C-V) and conductance-voltage (G-V) measurements were performed to investigate the charge trapping characteristics of the memory structures. The C-V hysteresis width depends on variations in the crystalline structure resulting from different annealing temperatures. It is also shown that charge injection is governed by the Fowler-Nordheim tunnel mechanism for higher electric fields.  相似文献   

17.
The atomic and electronic structures of metal-rich noncentrosymmetric zirconium oxide synthesized by the ion beam sputtering of a metallic target in an oxygen atmosphere has been studied by X-ray photoelectron spectroscopy, Raman scattering, spectral ellipsometry, and quantum-chemical simulation. It has been established that ZrOx < 2 consists of ZrO2, metallic Zr, and zirconium suboxides ZrOy. The stoichiometry parameter of ZrOy has been estimated. It has been shown that the optical properties of ZrOx < 2 are determined by metallic Zr. A model of fluctuation of the width of the band gap and a potential for electrons and holes in ZrOx < 2 based on spatial fluctuations of the chemical composition has been proposed.  相似文献   

18.
We report X-ray diffraction, magnetization and transport measurements for polycrystalline samples of the new layered superconductor Bi4?x Ag x O4S3(0 ≤ x ≤ 0.2). The superconducting transition temperature (T C) decreases gradually and finally suppressed when x < 0.10. Accordingly, the resistivity changes from a metallic behavior for x < 0.1 to a semiconductor-like behavior for x > 0.1. The analysis of Seebeck coefficient shows there are two types of electron-like carriers dominate at different temperature regions, indicative of a multiband effect responsible for the transport properties. The suppression of superconductivity and the increased resistivity can be attributed to a shift of the Fermi level to the lower-energy side upon doping, which reduces the density of states at E F. Further, our result indicates the superconductivity in Bi4O4S3 is intrinsic and the dopant Ag prefers to enter the BiS2 layers, which may essentially modify the electronic structure.  相似文献   

19.
Static magnetic susceptibility χ(T) in the normal state (Tc ≤ T ≤ 400 K) and specific heat C(T) near temperature Tc of the transition to the superconducting state are experimentally studied for a series of fine crystalline samples of high-temperature YBa2Cu3Oy superconductor, having y and Tc close to optimal but differing in the degree of nanoscale structural disordering. It is shown that under the influence of structural disordering, there is enhancement of anomalous pseudogap behavior of the studied characteristics and a significant increase in the width of the pseudogap.  相似文献   

20.
The spinel structure of lithium titanate Li4Ti5O12 is refined by the Rietveld full-profile analysis with the use of x-ray and neutron powder diffraction data. The distribution and coordinates of atoms are determined. The Li4Ti5O12 compound is studied at high temperatures by differential scanning calorimetry and Raman spectroscopy. The electrical conductivity is measured in the high-temperature range. It is shown that the Li4Ti5O12 compound with a spinel structure undergoes two successive order-disorder phase transitions due to different distributions of lithium atoms and cation vacancies (□, V) in a defect structure of the NaCl type: (Li)8a[Li0.33Ti1.67]16dO4 → [Li□]16c[Li1.33Ti1.67]16dO4 → [Li1.330.67]16c[Ti1.670.33]16dO4. The low-temperature diffusion of lithium predominantly occurs either through the mechanism ... → Li(8a) → V(16c) → V(8a) → ... in the spinel phase or through the mechanism ... → Li(16c) → V(8a) → V(16c) → ... in an intermediate phase. In the high-temperature phase, the lithium cations also migrate over 48f vacancies: ... Li(16c) → V(8a, 48f) → V(16c) → ....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号