首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The influence of quantum-size layers (InAs quantum dots, In0.2Ga0.8As quantum wells, and combined quantum-well/quantum-dot layers) and heteroepitaxial passivation of surface by an In0.5Ga0.5P layer on the photomagnetic effect in epitaxial n-GaAs layers has been investigated. Original Russian Text ? I.A. Karpovich, O.E. Khapugin, 2009, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2009, Vol. 73, No. 1, pp. 119–123.  相似文献   

2.
3.
The dynamic field effect in Mn delta-doped epitaxial layers and quantum dimensional heteronanostructures of the p type with quantum wells and quantum dots was investigated. It was shown that an embedded Mn delta layer leads to the considerable capture of injected carriers on traps associated with the delta layer.  相似文献   

4.
5.
Pseudomorphic, highly strained (In,Ga)As/GaAs multiple quantum well structures were grown by molecular beam epitaxy and characterized by high-resolution X-ray diffraction. Thickness, lattice mismatch and chemical composition of the quantum wells were determined from measurements of satellite Bragg reflections and comparison with calculated rocking curves. In periodic structures, quantum wells with a width of less than 10 nm can be characterized by this technique. The results are compared with transmission electron microscopy, optical absorption and optical emission spectroscopy.  相似文献   

6.
Exciton recombination dynamics in vertical stacks of InGaAs quantum rings have been studied by means of continuous wave and time resolved photoluminescence under low excitation density conditions. We have paid special attention to the effect of the carrier coupling on the exciton radiative lifetime: weak (14 nm spacer sample), intermediate (4.5 nm spacer sample), where the size filtering effects (towards small rings) compensate partially that arising from carrier coupling (towards lower energies), and strong electron and hole coupling (1.5 nm spacer sample) between layers. Experimental decay times in the latter two cases have been compared to the times simulated with a multi-quantum well based model, which accounts for the observed change of carrier coupling regime. The most important effect is observed when the hole wave function overlap along the growth direction becomes important (1.5 nm spacer sample). This situation makes important the lateral tunneling of excitons between rings, given their large lateral size, which is characterized by times around 5 ns at the emission peak energy (rings with the most probable size of the distribution).  相似文献   

7.
Carrier spin coherence in a p-doped GaAs/(Al,Ga)As quantum well with a diluted hole gas is studied by picosecond pump-probe Kerr rotation. For resonant optical excitation of the positively charged exciton the spin precession shows two types of oscillations: Electron spin beats decaying with the charged exciton radiative lifetime of 50 ps, and long-lived hole spin beats with dephasing times up to 650 ps, which decrease with increasing temperature, underlining the importance of hole localization. The mechanism of hole spin coherence generation is discussed.  相似文献   

8.
The optical and electrophysical properties of the GaAs/In0.25Ga0.75As heterostructure with a symmetric double quantum well have been investigated. The influence of tunneling electrons and holes through an internal barrier of the quantum well on the shift and splitting of the quantum levels is analyzed. The theoretical estimates are compared with the results of the photoluminescence and photoconductivity measurements. The Hall measurements indicate that the barrier strongly affects the mobility of charge carriers.  相似文献   

9.
10.
The intermediate dimensionality regime is studied on a set of shallow GaAs/Ga Al As single quantum wells. Such heterostructures exhibit 2D strong excitonic electroabsorption together with near 3D fast transport properties. We report dephasing time measurements of the heavy-hole exciton and we show that the acoustic phonon contribution decreases with to a value in good agreement with theoretical predictions for GaAs bulk.  相似文献   

11.
In0.21Ga0.79As multiple quantum wells MQW, with different well thickness L, are grown on [001] and [113] A GaAs growth directions by molecular beam epitaxy MBE. An asymmetric photoluminescence PL line shape denoted LEA and LEB in the lower energies side has been observed in both structures. These emissions of deep localized states can be related to the energy potential modulation associated to Indium cluster formation. Temperature dependence of photoluminescence properties has been reported. Localized state ensemble LSE model has investigated atypical behaviors of PL peak energies and the full width at half maximum FWHM of both emissions. These abnormal behaviors are explained by carriers captured by localized recombination centers. Competition processes between localized and delocalized excitons have been occurred to interpret the PL properties. The degree of localization induced by quantum-dot-like states and critical temperatures between different temperatures regions increase as far as away [001] growth direction.  相似文献   

12.
We report on the electronic transport properties of p-modulation Be-doped Ga0.8In0.2As/GaAs single quantum well. The experiments included the spectral photoluminescence between 8 and 300?K, and Hall effect measurements at temperatures between 14 and 300?K. The effect of strain which induces splitting of the valence band as light and heavy hole bands on transport is discussed. The calculated band alignment of the GaInAs sample using model-solid theory including strain effects indicates large conduction band discontinuities and a much smaller valance band discontinuity in GaInAs. The effect of the conduction and valance band discontinuity on the electronic transport properties is also discussed.  相似文献   

13.
We study the photoluminescence of self-assembled (In,Ga)As/GaAs quantum dot ensembles with varying confinement potential height. The low energy shift of the s-shell emission with increasing excitation power gives a measure of the Coulomb interaction in these structures as it results from carrier–carrier interactions between the optically injected exciton complexes. When dividing this shift by the dot level splitting, determined by the geometric confinement, we obtain a universal function of the number of involved excitons that is independent of the confinement potential height. This shows an identical scaling of Coulomb interaction and geometric quantization with varying confinement.  相似文献   

14.
15.
Abstract

Here we report what we believe to be the first observation of the pressure dependence of the light hole behavior in a modulation doped In0.18Ga0.82As/GaAs single strained quantum well grown by MBE. Transport measurements have been undertaken as a function of temperature (4–300K) and hydrostatic pressure (4–8kbar). Hole mobilities of ~17000 cm2/Vs have been obtained for sheet carrier densities of ~3.3×1011 cm?2. At low temperatures (<100K) persistent photogenerated holes have been observed. The hole mobility is found to decrease with increasing pressure at a rate intermediate between that typically observed for holes and electrons in bulk III-V semiconductors.  相似文献   

16.
Electron spin coherence has been generated optically in n-type modulation doped (In,Ga)As/GaAs quantum dots (QDs) which contain on average a single electron per dot. The coherence arises from resonant excitation of the QDs by circularly polarized laser pulses, creating a coherent superposition of an electron and a trion. Time dependent Faraday rotation is used to probe the spin precession of the optically oriented electrons about a transverse magnetic field. The coherence generation can be controlled by pulse intensity, being most efficient for (2n+1)pi pulses.  相似文献   

17.
The generation of electron spin coherence has been studied in n-modulation-doped (In,Ga)As/GaAs self-assembled quantum dots (QDs) which contain on average a single electron per dot. The doping has been confirmed by pump–probe Faraday rotation experiments in a magnetic field parallel to the heterostructure growth direction. For studying spin coherence, the magnetic field was rotated by 90° to the Voigt geometry, and the precession of the electron spin about the field was monitored. The coherence is generated by resonant excitation of the QDs with circularly polarized laser pulses, creating a coherent superposition of an electron, and a trion state. The efficiency of the generation can be controlled by the pulse intensity, being most efficient for (2n+1)π pulses.  相似文献   

18.
19.
Magnetic and magnetotransport properties of GaAs(δ〈Mn〉)/In0.17Ga0.83As/GaAs quantum wells with different Mn concentrations are studied. The delta-doped manganese layer has been separated from the GaAs quantum well with a spacer with an optimal thickness (3 nm), which has provided a sufficiently high hole mobility (≥103 cm2V?1 s?1) in the quantum wells and their effective exchange with Mn atoms. It is found that the anomalous Hall effect (AHE) is exhibited only in a restricted temperature range above and below the Curie temperature, while the AHE is not observed in quantum wells with quasi-metallic conductivity. Thus, it is shown that the use of the AHE is inefficient in studying magnetic ordering in semiconductor systems with high-mobility carriers. The features observed in the behavior of the resistance, magnetoresistance, and Hall effect are discussed in terms of the interaction of holes with magnetic Mn ions with regard to fluctuations of their potential, hole transport on the percolation level, and hopping conduction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号