首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用原子力显微镜(AFM)观测了不同张应力退火的Fe基纳米晶(Fe73.5Cu1Nb3Si13.5B9)薄带横断面的形貌,并结合X射线衍射(XRD)图谱对不同张应力退火的Fe基纳米晶薄带的介观结构进行分析;测量了不同张应力退火Fe基纳米晶薄带的纵向驱动巨磁阻抗(LDGMI)曲线及横向磁各向异性场;认为张应力退火Fe基纳米晶薄带感生横向磁各向异性场的介观结构机理,是由于外加张应力退火产生由非晶相包裹着的α-Fe(Si)纳米晶粒(包裹晶粒)的横向优势团聚. 关键词: 应力退火 介观结构 AFM 团聚  相似文献   

2.
The structure of the Fe73.5Si13.5B9Nb3Cu1 soft magnetic alloy has been investigated using X-ray diffraction in transmission geometry. The initial alloy prepared by rapid quenching from the melt has a short-range order (∼2 nm) in the atomic arrangement, which is characteristic of the Fe-Si structure with a body-centered cubic lattice. The alloy subjected to annealing contains Fe-Si nanocrystals with sizes as large as 10–12 nm. The annealing under a tensile load leads to an extension of the nanocrystal lattice so that, after cooling, a significant residual deformation is retained. This can be judged from the relative shifts of the (hkl) peaks in the X-ray diffraction patterns measured for two orientations of the scattering vector, namely, parallel and perpendicular to the direction of the load applied. The deformation is anisotropic: within the accuracy of the experiment, no distortions in the [111] direction are observed and the distortions in the [100] direction are maximum. It is known that crystals with a composition close to Fe3Si exhibit a negative magnetostriction; i.e., their magnetization induced under a load (Villari effect) applied along the [100] direction is perpendicular to this direction along one of the easy magnetization ([010] or [001]) axes. In the alloy, the orientation of the nanocrystal axes is isotropic and the majority of the nanocrystals have a composition close to Fe3Si. The direction of magnetization of these nanocrystals is determined by the residual deformation of their lattice and lies near the plane perpendicular to the direction of the tensile load applied during heat treatment. This is responsible for the appearance of transverse magnetic anisotropy of the easy-plane type in the Fe73.5Si13.5B9Nb3Cu1 alloy.  相似文献   

3.
Fe1 ? x Six (x = 0.05–0.06) single crystals were prepared and subjected to various heat treatments for structural studies. X-ray diffuse scattering measurements detected an anisotropy of regions with local B2-type atomic ordering in samples with induced magnetic anisotropy. It was shown that the average size of ordered clusters as measured along an applied dc magnetic field during heat treatment is slightly larger than that in a transverse direction and reaches 10 Å. Such anisotropy of B2-type regions is not observed in magnetically isotropic samples obtained by rapid quenching or by annealing and cooling in a rotating field (or in the absence of an external field). A comparative analysis of the atomic structure, domain structure, and hysteresis loop shape in samples subjected to various treatments demonstrated a correlation between the short-range order and magnetic properties.  相似文献   

4.
The soft magnetic properties of amorphous ribbons are expected to be anistropic because of the shear deformation during the melt spinning procedure. In this paper the losses of an Fe80B14Si6 amorphous ribbon were measured on stripes which were cut either parallel or perpendicular to the ribbon axis. The dependence of the losses as a function of peak induction and frequency suggests that there is an easy axis of magnetization parallel to the ribbon axis. After stress relief annealing this anisotropy is reduced. That is why this anisotropy is assumed to be due to internal stress introduced upon quenching.  相似文献   

5.
The possibility of achieving soft magnetization in semi-hard magnetic films such as Fe, Fe93.5Si6.5, Fe50Co50 and Fe70Co30 is investigated by depositing films on an Fe20Ni80 underlayer by oblique-incidence evaporation. The magnetic anisotropy of the underlayer is strengthened to a depth of several lattice parameters by vapor deposition of the film at an oblique angle to the substrate surface. This method also allows magnetic anisotropy to be induced in strongly isotropic semi-hard magnetic overlayers to a thickness of a few thousands Angstroms. The coercive force of bilayer films measured along the hard-axis is reduced remarkably by this process, and the strength of the anisotropy field is demonstrated to be readily controllable. When magnetic anisotropy exists in both magnetic layers, a significant change is observed in the magnetization processes of the semi-hard magnetic layer and the coercive forces in the hard magnetization direction is dramatically reduced. Soft magnetization of the semi-hard magnetic layer cannot be achieved when magnetic anisotropy exists in only one of the magnetic layers.  相似文献   

6.
The dependence on the metalloid content of some magnetic properties of Co100−x(Si0.6B0.4)x (22.5 ⩽ x ⩽ 30) and Co75Si25−xBx (10 ⩽ x ⩽ 25) amorphous alloys has been studied.Ribbons were subjected to different kinds of heating treatments: field annealing, stress annealing and stress-field annealing (tensile stress and longitudinal magnetic field applied simultaneously). While the anisotropies induced by simple field annealings are of the order of magnitude of 0.1 kJm-3, the anisotropy induced by stress-field annealing can reach values up to 0.5 kJm-3. The preferred axis is longitudinal for most of the annealing conditions. The temperature and composition dependence of the magnetostriction have been studied too.Stress, field and stress-field induced anisotropies have also been measured in Co66Fe9B25 samples (λs > 0). In this case the preferred axis is transverse to the ribbon axis.  相似文献   

7.
The magnetic hysteresis of Fe57Ni43/Si(100) with magnetic anisotropy induced by an external field has been studied by Brillouin light scattering (BLS). The results are compared with those of the magneto-optic-Kerr-effect (MOKE) measurement and the vibrating sample magnetometer (VSM). The BLS results show that the sample film has strong in-plane anisotropy. The angle between the magnetization and a 4.6 G applied magnetic field H reaches a maximum value of 45° when H lies along the hard axis. The coercivity and magnetic anisotropy field for the film obtained by the BLS are compared with the values obtained by the VSM and MOKE measurement.  相似文献   

8.
The effect of creep annealing on the57Fe enriched Co-rich low magnetostriction amorphous alloys will be reported. Contrary to the Fe-B-base alloys, after creep annealing of the57Fe5Co57Ni10Si11B17 the ribbon axis becomes the hard direction. Both Mössbauer spectroscopy and direct magnetic domain observations by SEM confirmed an enhanced volume with magnetization oriented in transversal and normal directions to the ribbon axis. Relaxation of the creep-induced state at a temperature slightly below that of the creep annealing leads to the enhancement of the fraction of domains magnetized in the longitudinal direction.  相似文献   

9.
A jump like magnetic transition is observed at relatively weak field in Tb3Fe5O12 when the magnetic field is applied along the hard axis and no transition is observed with the field applied along the easy axis. We believe that this evolution is related to the ”Umbrella” type magnetic structure known to exist in Tb3Fe5O12 at low temperatures.  相似文献   

10.
Structural and magnetic properties of nanocrystalline Fe75???x Co x Cu1 Nb3Si15B6 (x?=?0, 2, 5) alloys are reported using magnetic measurements X-ray diffraction, Mössbauer spectroscopy. Results show that: (1) for the specimens with x?=?0 reveal that the volume fraction of the nanograins and their grain diameter ranges between 56% and 80% and 10 and 18 nm, (2) annealing above 700°C apart from Fe3Si type nanocrystals, magnetically hard Fe3B, Fe23B phases also appear, leading to a sharp increase of the coercive field, (3) Co content and applied stress during annealing has considerable effect on relative permeability and stress induced anisotropy, which is perpendicular to the ribbon axis, Mössbauer spectroscopy also suggests changes in spin texture.  相似文献   

11.
The structure, magnetic properties and magnetostriction of Fe81Ga19 thin films have been investigated by using X-ray diffraction analysis, scanning electron microscope (SEM), vibrating sample magnetometer and capacitive cantilever method. It was found that the grain size of as-deposited Fe81Ga19 thin films is 50–60 nm and the grain size increases with increase in the annealing temperature. The remanence ratio (Mr/Ms) of the thin films slowly decreases with increase in the annealing temperature. However, the coercivity of the thin films goes the opposite way with increase in the annealing temperature. A preferential orientation of the Fe81Ga19 thin film fabricated under an applied magnetic field exists along 〈1 0 0〉 direction due to the function of magnetic field during sputtering. An in-plane-induced anisotropy of the thin film is well formed by the applied magnetic field during the sputtering and the formation of in-plane-induced anisotropy results in 90° rotations of the magnetic domains during magnetization and in the increase of magnetostriction for the thin film.  相似文献   

12.
Rapid stress annealing induced changes in structural and magnetic properties in Fe74.5Cu1Nb3Si15.5B6 are reported. Obtained results suggest changes in spin texture with preferred orientation along ribbon axis. Fraction of A site in the DO3 lattice occupied by Si atoms, increases, with increase of applied stress during annealing. Volume fraction of the nanograins up to 60% (exhibiting quite similar mean grain diameter ~9 nm) is observed. Lattice parameter values suggest that Si content in the nanocrystalline phase is between 14% and 19% and increase of lattice parameter suggests the elongation of the unit cell. Studied stress annealed samples exhibit soft magnetic behavior (coercive field ranging between 4 and 8 Am???1). Stress annealing reduces permeability whereas anisotropy field increases almost linearly exhibiting the induction of uniaxial and perpendicular to the ribbon axis anisotropy. Obtained stress-induced-anisotropy constant values range between 50 and 2,140 Jm???3.  相似文献   

13.
利用X射线磁性圆二色技术对Co0.9Fe0.1薄膜面内元素分辨的磁各向异性进行了研究,通过剩磁模式测量不同磁化方向的样品组分原子单位空穴磁矩的变化,发现除了在生长的磁诱导方向存在易磁化轴外,在与该轴垂直的方向还存在一个类似易轴的软磁化轴;面内的两个难磁化轴与易磁化轴取向大约成66°夹角,从而构成了面内双轴磁各向异性;对不同组分元素,其单位空穴磁矩随磁化方向的变化趋势基本相同,不同磁化方向Fe原子单位空穴的磁矩值约为Co的对应值的87%,反映了Fe原子和Co原子之间存在着强烈的铁磁性耦合. 关键词: 磁各向异性 X射线磁性圆二色 铁磁耦合 CoFe合金薄膜  相似文献   

14.
Evaporative deposition at oblique incidence is shown to enhance the magnetic anisotropy of an Fe20Ni80 magnetic film and induce magnetic anisotropy in an overlying, strongly isotropic Fe70Co30 film. This deposition method for the formation of an underlayer of several lattice parameters in thickness and semi-hard overlayer of a few thousands Angstroms in thickness achieves a significant change in the magnetization process and strong suppression of the coercive forces of Fe70Co30 in the hard magnetization direction. Soft magnetization of the Fe70Co30 overlayer is not achieved when one of the layers is deposited at oblique incidence. It is anticipated that shape magnetic anisotropy is responsible in part for the magnetic anisotropy induced in both in Fe20Ni80 under- and Fe70Co30 overlayer by oblique incidence evaporation.  相似文献   

15.
The transverse magnetic anisotropy and lattice plane anisotropy of stress-annealed Fe–Cu–Nb–Si–B amorphous ribbons have been studied. The GMI effect or impedance ratio decreased gradually with increasing applied tensile stress. The transverse anisotropy field (Hk) corresponded to the full width at half maximum (FWHM) of the GMI curves. A linear response was found between the applied tensile stress (σ) and the transverse anisotropy field (Hk), and it was seen from the linear expression that annealing without stress resulted in a very small Hk of ~200 A/m. We also calculated the strains from the elongations obtained during the stress annealing process, the results showed that the strain and applied stress were linearly related and for a zero-tensile stress, the elastic strain was negative (?0.0219) showing that contraction dominates during annealing without tensile stresses. The lattice plane anisotropy (Δd) calculated from XRD peaks was also linearly related to the applied tensile stress. The lattice spacing in the direction parallel to the tensile stress was elongated while the lattice spacing in the direction perpendicular to the tensile stress was compressed.  相似文献   

16.
The influence of Tb25Fe61Co14 thin film thicknesses varying from 2 to 300 nm on the structural and magnetic properties has been systematically investigated by using of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, magnetization, and magneto-optic Kerr effect microscopy measurements. Thin film growth mechanism is pursued and controlled by ex-situ X-ray refractometry measurements. X-ray diffraction studies reveal that the Tb25Fe61Co14 films are amorphous regardless of thin films thicknesses. The magnetic properties are found to be strongly related to thickness and preferred orientation. With an increase in film thickness, the easy axis of magnetization is reversed from in-plane to out-of-plane direction. The change in the easy axes direction also affects the remanence, coercivity and magnetic anisotropy values. The cause for the magnetic anisotropy direction change from in-plane to out-of-plane can be related to the preferred orientation of the thin film which depends on the large out-of-plane coercivity and plays an important role in deciding the easy axes direction of the films. According to our results, up to the 100 nm in-plane direction is dominated over the whole system under major Fe-Fe interaction region, after that point, the magnetic anisotropy direction change to the out-of-plane under major Tb-Fe/Tb-Co interaction region and preferred orientation dependent perpendicular magnetic anisotropic properties become more dominated with 2.7 kOe high coercive field values.  相似文献   

17.
在用二次氧化法制备的高度有序的氧化铝模板上通过交流电化学方法制备了Co纳米线阵列.研究了外加磁场及电解液pH值对纳米线生长的影响.在pH值为6.0和6.5的电解液中分别在不加磁场和沿纳米线轴向施加0.3 T磁场情况下制备了hcp结构的Co纳米线阵列.实验数据表明,沉积时外加磁场和调节pH值能有效影响纳米线中hcp结构的Co晶粒的易磁化轴沿纳米线长轴方向生长.由于晶粒的磁晶各向异性和纳米线沿长度方向的宏观形状各向异性叠加,制备的Co纳米线阵列具有高垂直各向异性,高矫顽力和较高矩形比. 关键词: Co纳米线阵列 织构 磁性  相似文献   

18.
研究了应用于微波频段的多层纳米颗粒膜的电阻率、软磁特性和微波磁导率.采用多次顺序沉积Co40Fe40B20和SiO2薄层制备了薄膜.在100kA/m均匀面内磁场经过250℃真空退火2h,制备的Co40Fe40B20/SiO2多层膜具有难轴矫顽力为210A/m、饱和磁化强度为838.75kA/m、电阻率为2.06×103关键词: 纳米颗粒膜 电阻率 软磁特性 微波磁导率  相似文献   

19.
Uniaxial magnetic anisotropy has been induced in amorphous Fe73.5Cu1Nb3Si15.5B7 (Fe-rich) and (Co77Si13.5B9.5)90Fe7Nb3 (Co-rich) ferromagnetic alloys by annealing under stress and/or magnetic field. Such anisotropy plays a crucial role on the magnetization process and, consequently, determine the future applications of these materials. The mechanisms involved on the origin of such induced magnetic anisotropy showed significant differences between Fe-rich and Co-rich amorphous alloys. This work provides a comparative study of the coercive field and induced magnetic anisotropy in Fe-rich and Co-rich (Finemet) amorphous alloys treated by stress and/or field.  相似文献   

20.
Transverse magnetic anisotropy has been induced in the Fe14.7Co58.8Cu1Nb3Si13.5B9 and Fe13.8Co65Cu0.6Nb2.6Si9B9 amorphous ribbons by annealing under an external magnetic field. This anisotropy plays a predominant role, compared to magneto-crystalline and magneto-elastic anisotropies, in forming the magnetic properties and shaping the hysteresis loop. The effect of temperature and time of annealing on the induced magnetic anisotropy and magnetic properties (magnetic permeability, coercivity and power losses) in both alloys was investigated. Under this work, measurements of frequency dependence of the real and imaginary parts of magnetic permeability were made within a frequency range up to 110 MHz. It was found that as a result of magnetic field annealing the Snoek limit increases in both alloys compared to the Co-free Finemet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号