首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A study has been made of the effect of a dc electric field (0 < E < 4 kV/cm) on the optical transmittance of single-crystal compounds PbMg1/3Nb2/3O3-xPbTiO3 (PMN-xPT) located at the boundaries of the morphotropic region (x = 32.0 and 36.5%) and directly at the center of the morphotropic region (x = 35%). It is shown that, at temperatures close to the morphotropic phase transition point, the electric field induces two phase transitions in PMN-32PT and PMN-35PT crystals and only one phase transition in PMN-36.5PT. The tetragonal (T) phase induced in all three compounds remains stable after the electric field is removed only in crystals with x = 35.0 and 36.5%, whereas the T phase is metastable and transforms into the monoclinic M c phase after the field is switched off in the PMN-32PT crystals lying at the boundary of the morphotropic region on the rhombohedral side. It is found that the electric-field-induced intermediate phase M c in PMN-35PT is inhomogeneous and that M c transforms into the tetragonal phase in a continuous transition. It is suggested that only the presence of a third orthorhombic phase can account for the continuous character of the transition between the M c and T phases in PMN-35PT crystals. The results obtained are interpreted in terms of the Devonshire theory for strongly anharmonic crystals. The E-T phase diagrams are constructed for all the crystals.  相似文献   

2.
The unit cell parameters a, b, and c of [N(CH3)4]2ZnCl4 have been measured by x-ray diffraction in the temperature range 80–293 K. Temperature dependences of the thermal expansion coefficients αa, αb, and αc along the principal crystallographic axes and of the unit cell thermal expansion coefficient αV were determined. It is shown that the a=f(T), b=f(T), and c=f(T) curves exhibit anomalies in the form of jumps at phase transition temperatures T1=161 K and T2=181 K and that the phase transition occurring at T3=276 K manifests itself in the a=f(T) and b=f(T) curves as a break. A slight anisotropy in the coefficient of thermal expansion of the crystal was revealed. The phase transitions occurring at T1=161 K and T2=181 K in [N(CH3)4]2ZnCl4 were established to be first-order.  相似文献   

3.
The structural, mechanical, electronic and thermoelectric properties of the low temperature orthorhombic perovskite phase of CH3NH3PbI3 have been investigated using density functional theory (DFT). Elastic parameters bulk modulus B, Young’s modulus E, shear modulus G, Poisson’s ratio ν and anisotropy value A have been calculated by the Voigt–Reuss–Hill averaging scheme. Phonon dispersions of the structure were investigated using a finite displacement method. The relaxed system is dynamically stable, and the equilibrium elastic constants satisfy all the mechanical stability criteria for orthorhombic crystals, showing stability against the influence of external forces. The lattice thermal conductivity was calculated within the single-mode relaxation-time approximation of the Boltzmann equation from first-principles anharmonic lattice dynamics calculations. Our results show that lattice thermal conductivity is anisotropic, and the corresponding lattice thermal conductivity at 150 K was found to be 0.189, 0.138, and 0.530 Wm?1K?1 in the a, b, and c directions. Electronic structure calculations demonstrate that this compound has a DFT direct band gap at the gamma point of about 1.57 eV. The electronic transport properties have been calculated by solving the semiclassical Boltzmann transport equation on top of DFT calculations, within the constant relaxation time approximation. The Seebeck coefficient S is almost constant from 50 to 150 K. At temperatures 100 and 150 K, the maximal figure of merit is found to be 0.06 and 0.122 in the direction of the c-axis, respectively.  相似文献   

4.
The temperature dependences of the permittivity ? and the false-color image patterns obtained by the rotating polarizer method for single crystals of (1 ? x)NaNbO3?x Gd1/3NbO3 (x = 0.003, 0.090) solid solutions with different degrees of diffuseness of the phase transition are investigated. A multifractal analysis of the false-color images has revealed anomalies in the temperature dependences of the parameter ? of the multifractal spectrum. For a sample with a sharp phase transition (x ≈ 0.003), the temperature of this anomaly is in good agreement with the temperature of the jumps in the permittivity ?(T) and birefringence. For an NNG crystal with x ≈ 0.09, which exhibits a diffuse maximum of ?(T), the temperatures of the anomalies of ?(T) differ in the central and peripheral regions, which correlates with the distribution of Gd over the crystal.  相似文献   

5.
The temperature behavior of I-U curves and the field and temperature dependences of the electrical resistivity and dielectric permittivity of crystals of the LiCu2O2 phase have been studied. It was established that the crystals belong to p-type semiconductors and that their static resistivity in the range 80–260 K follows the Mott law ρ=Aexp(T0/T)1/4 describing variable-range hopping over localized states. At comparatively low electric fields, the crystals exhibit threshold switching and characteristic S-shaped I-U curves containing a region of negative differential resistivity. In the critical voltage region, jumps in the conductivity and dielectric permittivity are observed. Possible mechanisms of the disorder and electrical instability in these crystals are discussed.  相似文献   

6.
The temperature dependence of the elongation per unit length for Pb(Mg1/3Nb2/3)O3 crystals unannealed after growth and mechanical treatment is investigated in the course of thermocycling. It is revealed that this dependence deviates from linear behavior at temperatures below 350°C. The observed deviation is characteristic of relaxors, is very small in the first cycle, increases with increasing number n of thermocycles, and reaches saturation at n≥3. In the first cycle, a narrow maximum of the acoustic emission activity is observed in the vicinity of 350°C. In the course of thermocycling, the intensity of this maximum decreases and becomes zero at n>3. For (1?x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 crystals, the dependence of the temperature of this acoustic emission maximum on x exhibits a minimum. It is assumed that the phenomena observed are associated with the phase strain hardening due to local phase transitions occurring in compositionally ordered and polar nanoregions.  相似文献   

7.
The crystal structure and magnetic properties of the Bi1 ? x Ca x Fe1 ? x/2Nb x/2O3 system were studied. It is shown that, at x ≤ 0.15, the unit-cell symmetry of solid solutions is rhombohedral (space group R3c). Solid solutions with x ≥ 0.3 have an orthorhombic unit cell (space group Pbnm). The rhombohedral compositions are antiferromagnetic, while the orthorhombic compositions exhibit a small spontaneous magnetization due to Dzyaloshinski?-Moriya interaction. In CaFe0.5Nb0.5O3, the Fe3+ and Nb5+ ions are partially ordered and the unit cell is monoclinic (space group P21/n). In the concentration range 0.15 < x < 0.30, a two-phase state (R3c + Pbnm) is revealed.  相似文献   

8.
Single crystals of double sodium-containing lanthanum and gadolinium molybdates doped with Tm3+ ions were synthesized by the Czochralski method. The spectroscopic properties of these crystals were investigated from the viewpoint of their use as active media in diode-pumped lasers. The polarized spectra of absorption on the 3 H 4 and 3 F 4 levels and the polarized spectra of luminescence due to the 3 F 4-3 H 6 laser transition were recorded, and the lifetimes of the 3 H 4 and 3 F 4 excited states of the Tm3+ ions were determined. The luminescence cross sections were calculated using the Füchtbauer-Ladenburg formula. The simulation of the decay curve of the 3 H 4 excited state according to the Golubov-Konobeev-Sakun method revealed that, in the crystals under investigation, the interaction between Tm3+ ions predominantly occurs through the dipole-dipole mechanism.  相似文献   

9.
Single crystals of the K3H(SO4)2 compound are investigated using X-ray diffraction on Xcalibur S and Bruker diffractometers. The structure of the low-temperature monoclinic phase is refined (space group C2/c, z = 4, a = 14.698(1) Å, b = 5.683(1) Å, c = 9.783(1) Å, β = 103.01(1)°, T = 293 K, Bruker diffractometer), the structural phase transition is revealed, and the structure of the high-temperature trigonal phase is determined (space group R \(\bar 3\) m, z = 3, a = 5.73(1) Å,c = 21.51(1) Å,T = 458 K, Xcalibur diffractometer).  相似文献   

10.
The dielectric and optical (optical transmission, small-angle light scattering, birefringence) properties of PMNT-0.2 single crystals and their variation induced by a dc electric field have been studied. The birefringence was found to increase anomalously at the transition from the rhombohedral ferroelectric to the inhomogeneous relaxor phase (the spontaneous ferroelectric transition temperature Tsp). Below Tsp, the dielectric and optical properties were observed to exhibit anomalies originating from reorientation and growth of domains in size. Unlike ferroelectric relaxors of the type of PbB1/3B2/3O3 and PbB1/2B1/2O3, in PMNT-0.2 neither induction of the ferroelectric phase by an electric field nor thermally stimulated destruction of the ferroelectric state occurs through the percolation mechanism (i.e., they are not accompanied by anomalously narrow maxima in small-angle light scattering). This is attributed to the inhomogeneous structure of the relaxor phase, as a result of which the phase transition does not take place simultaneously in various regions of the crystal.  相似文献   

11.
We report on the magnetostriction of hexagonal HoMnO3 and YMnO3 single crystals in a wide range of applied magnetic fields (up to H = 14 T) at all possible combinations of the mutual orientations of magnetic field H and magnetostriction ΔL/L. The measured ΔL/L(H, T) data agree well with the magnetic phase diagram of the HoMnO3 single crystal reported previously by other authors. It is shown that the nonmonotonic behavior of magnetostriction of the HoMnO3 crystal is caused by the Ho3+ ion; the magnetic moment of the Mn3+ ion parallel to the hexagonal crystal axis. The anomalies established from the magnetostriction measurements of HoMnO3 are consistent with the phase diagram of these compounds. For the isostructural YMnO3 single crystal with a nonmagnetic rare-earth ion, the ΔL/L(H, T) dependences are described well by a conventional quadratic law in a wide temperature range (4–100 K). In addition, the magnetostriction effect is qualitatively estimated with regard to the effect of the crystal electric field on the holmium ion.  相似文献   

12.
The temperature dependences of the velocity of longitudinal sound waves and the internal friction in a La0.82Ca0.18MnO3 single crystal with the Curie temperature T C = 181 K have been studied. As temperature decreases, the single crystal is shown to undergo the transition from the pseudocubic O* to the Jahn–Teller O’ phase at T ~ 254 K and the reverse transition from O’ to O* phase at T ~ 84 K. The velocity of sound and the internal friction in the O’ phase are found to be significantly smaller than those in the O* phase.  相似文献   

13.
Ultraviolet photoluminescence (PL) of LiB3O5 (LBO) crystals has been studied under selective excitation by photons in the vacuum ultraviolet and ultrasoft x-ray regions, including the K-absorption edges of the Li and B cations and O anion. Radiative recombination of electron-hole pairs was established to be the main channel of the intrinsic PL excitation at 4.2 eV. Features were observed in the PL excitation spectra near the lithium and boron K-absorption edges originating from excitation of the cation 1s core excitons. Experimental evidence of the multiplication of Li 1s excitons in LBO was obtained. It is shown that excitation of the O 1s core excitons does not affect the PL yield noticeably. The differences in the appearance of the Li, B, and O 1s excitons in the excitation spectra of the LBO ultraviolet PL are discussed.  相似文献   

14.
Magnetoelectric interactions have been investigated in a single crystal of gadolinium iron borate GdFe3(BO3)4, whose macroscopic symmetry is characterized by the crystal class 32. Using the results of this study, the interplay of magnetic and electric orderings occurring in the system has been experimentally revealed and theoretically substantiated. The electric polarization and magnetostriction of this material that arise in spin-reorientation transitions induced by a magnetic field have been investigated experimentally. For Hc and Hc, H-T phase diagrams have been constructed, and a strict correlation between the changes in the magnetoelectric and magnetoelastic properties in the observed phase transitions has been ascertained. A mechanism of specific noncollinear antiferroelectric ordering at the structural phase transition point was proposed to interpret the magnetoelectric behavior of the system within the framework of the symmetry approach in the entire temperature range. This ordering provides the conservation of the crystal class of the system when the temperature decreases to the antiferroelectric ordering point. The expressions that have been obtained for the magnetoelectric and magnetoelastic energy describe reasonably well the behavior of gadolinium iron borate observed experimentally.  相似文献   

15.
The results of studies of the absorption spectra of nickel orthoborate Ni3(BO3)2 in the range of electronic dd-transitions are reported. The obtained data are analyzed in the framework of the crystal field theory. The Ni2+ ions are located in two crystallographically nonequivalent positions 2a and 4f with point symmetry groups C2h and C2, respectively, surrounded by six oxygen ions forming deformed octahedra. The absorption spectra exhibit three intense bands corresponding to spin-resolved transitions from the ground state of nickel ion 3A2g (3F) to the sublevels of the 3T2g (3F), 3T1g (3F) and 3T1g (3P) triplets split by the spinorbit interaction and the rhombic component of the crystal field. At temperatures below 100 K, the spectra exhibit a thin structure, in which phonon-free lines can be distinguished. Comparison of the calculated frequencies of the zero-phonon transitions with the experimental data allows estimating parameters of the crystal field acting on the nickel ions in the 2a- and 4f-positions, as well as the parameters of electrostatic interaction between the 3d electrons and spin-orbit interaction constants.  相似文献   

16.
Metastable solid solutions (SS) Mn3FeTiSbO9 and Mn4FeTi2SbO12 with the ilmenite structure (space group R\(\bar 3\)) have been prepared by quenching at normal conditions. The compositions of the compounds have been justified using EDX spectroscopy and X-ray diffraction. The magnetic properties of SSs have been analyzed by comparison with ferrimagnetic ilmenite Mn2FeSbO6 (TN = 269 K) as a natural mineral and ceramics obtained at high pressure and high temperature. The solid solutions have been characterized as dilute magnetic systems formed as a result of substitution of nonmagnetic cations Ti4+ for a part of Fe3+ and Sb5+ cations. Mn3FeTiSbO9 is considered as a ferromagnetic with TN = 171 K and Mn4FeTi2SbO12 as a magnetic with the concentration of magnetic clusters below the percolation threshold.  相似文献   

17.
The effect of uniaxial mechanical pressure σ m ≤ 150 bar on the spectral (300–800 nm) dependence of the birefringerence Δn i and refractive indices n i of (NH4)2SO4 crystals has been investigated. It is shown that the dispersion of n i (λ) and Δn i (λ) is normal and sharply increases with approach to the absorption edge. It is established that uniaxial pressure does not change the character of the dispersions dn i / and dΔn i / and only affects their magnitudes. It is shown that the increase in the refractive indices under uniaxial stress is mainly due to the increase in the refraction caused by the increase in the band gap and long-wavelength shift of the UV absorption band maximum.  相似文献   

18.
The reversible magnetic torque of untwinned YBa2Cu3O7 single crystals shows the four-fold symmetry in thea-b plane. The irreversible torque indicates evidence for a novel intrinsic pinning along thea andb axes. These facts mean that the free energy of the four-fold symmetry has a minimum when the field is applied along thea orb axis. The results are consistent with those expected from thed x 2?y 2 symmetry and rule out the possibility of thed xy symmetry. The Fermi surface anisotropy is not responsible for the observed anisotropy. This is firstbulk evidence for thek-dependent gap anisotropy on the Fermi surface. The two-fold anisotropy parameter is found as\(\gamma _{ab} = \sqrt {{{m_a } \mathord{\left/ {\vphantom {{m_a } {m_b }}} \right. \kern-\nulldelimiterspace} {m_b }}} = 1.18 \pm 0.14\).  相似文献   

19.
The comparative study of the magnetoelectric properties and magnetostriction of HoGa3(BO3)4 and HoAl3(BO3)4 single crystals has been carried out. The investigated compounds exhibit qualitatively similar magnetodielectric and inverse magnetoelectric ME E effects with the close absolute values, which is indicative of the weak effect of a nonmagnetic metal ion. On the contrary, the magnetostriction of the galloborate has been found to be threefold higher than that of the alumoborate. In addition, the difference between the qualitative behaviors of magnetostriction has been established: the magnetic-field dependence of magnetostriction for the alumoborate has the maximum near 70 kOe at T = 4.2 K, while the galloborate magnetostriction has no maximum and does not saturate in a field of 140 kOe.  相似文献   

20.
Temperature dependences of the absorption coefficient in A3B5 crystals before and after irradiation by electrons with an energy of 6 MeV and a dose of Ф = 2 × 1017 electron/cm2 are studied. A low-lying Ev + 0.4 eV center of a nonimpurity origin is found in both undoped GaAs crystals and those doped with various impurities (Te, Zn, Sn, Ga1–xInxAs, InP, and InP〈Fe〉).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号