首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using infrared (IR) spectroscopy and spectral ellipsometry, we experimentally confirmed the previously predicted mechanochemical effect of the stoichiometric composition disorder leading to the formation of carbon-vacancy structures in silicon carbide (SiC) films grown on silicon substrates by the atom substitution method. It was found that a band at 960 cm–1 in the IR spectra of SiC films on silicon, corresponding to “carbon-vacancy clusters” is always present in SiC films grown under pure carbon monoxide (CO) or in a mixture of CO with silane (SiH4) on Si substrates of different orientation and doping level and type. There is no absorption band in the region of 960 cm–1 in the IR spectra of SiC films synthesized at the optimum ratio of the CO and trichlorosilane (SiHCl3) gas pressures. The previously predicted mechanism of the chemical reaction of substitution of Si atoms for carbon by the interaction of gases CO and SiHCl3 on the surface of the silicon substrate, which leads to the formation of epitaxial layers of single-crystal SiC, is experimentally confirmed.  相似文献   

2.
Methods of linear algebra were used to find a basis of independent chemical reactions in the topochemical conversion of silicon into silicon carbide by the reaction with carbon monoxide. The pressure–flow phase diagram was calculated from this basis, describing the composition of the solid phase for a particular design of vacuum furnace. It was demonstrated that to grow pure silicon carbide, it is necessary to ensure the pressure of carbon monoxide less than a certain value and its flow more than a certain value, depending on the temperature of the process. The elastic fields around vacancies formed were considered for the first time in calculating the topochemical reaction. It was shown that the anisotropy of these fields in a cubic crystal increases the constant of the main reaction approximately fourfold.  相似文献   

3.
Physics of the Solid State - The interaction between a silicon vacancy and a carbon atom formed in silicon during the topochemical synthesis of silicon carbide from silicon has been calculated...  相似文献   

4.
A symmetry analysis of the crystal structure and the phonon spectrum during continuous topochemical conversion of silicon into silicon carbide has been carried out. The transformation of the symmetry of phonons at high-symmetry points of the Brillouin zone upon the transition from the initial cubic structure of silicon (diamond) through an intermediate cubic structure of silicon carbide to the trigonal structure of SiC has been determined. The selection rules for the infrared and Raman spectra of all the three phases under investigation have been established.  相似文献   

5.
We have examined amorphous structures of silicon carbide (SiC) using both transmission electron microscopy and a molecular-dynamics approach. Radial distribution functions revealed that amorphous SiC contains not only heteronuclear (Si-C) bonds but also homonuclear (Si-Si and C-C) bonds. The ratio of heteronuclear to homonuclear bonds was found to change upon annealing, suggesting that structural relaxation of the amorphous SiC occurred. Good agreement was obtained between the simulated and experimentally measured radial distribution functions.  相似文献   

6.
The presented work describes behavior of contact structures of Ni/Ti type on 6H-SiC n-type. The best contact resistivity obtained is 3.3 × 10−4 Ω cm2. The structure showed excellent thermal stability, it was stable after being tested for 10 h at 900 °C. XRD analysis after annealing at 960 °C revealed orthorhombic Ni2Si as the dominate phase.  相似文献   

7.
X-ray diffraction and small-angle scattering study of nanoporous carbon samples prepared from polycrystalline α SiC and single-crystal 6H SiC is reported. The distribution function of carbon nanoclusters in size was found. In α SiC samples, the small size (10–12 Å) of nanoclusters is combined with their high size uniformity. Graphite-like nanoclusters 30–60 Å in size were found in samples of both types. In 6H SiC samples, such clusters make up a notable fraction of the volume. The experimentally observed structural anisotropy of the samples is discussed.  相似文献   

8.
The effects of boron doping on the structural and electronic properties of (6,0)@(14,0) double-walled silicon carbide nanotube (DWSiCNT) are investigated by using spin-polarized density functional theory. It is found that boron atom could be more easily doped in the inner tube. Our calculations indicate that a Si site is favorable for B under C-rich condition and a C site is favorable under Si-rich condition. Additionally, B-substitution at either single carbon or silicon atom site in DWSiCNT could induce spontaneous magnetization.  相似文献   

9.
Pressure-induced structural transformation in cubic silicon carbide is studied with the isothermal-isobaric molecular-dynamics method using a new interatomic potential scheme. The reversible transformation between the fourfold coordinated zinc-blende structure and the sixfold coordinated rocksalt structure is successfully reproduced by the interatomic potentials. The calculated volume change at the transition and hysteresis are in good agreement with experimental data. The atomistic mechanisms of the structural transformation involve a cubic-to-monoclinic unit-cell transformation and a relative shift of Si and C sublattices in the 100 direction.  相似文献   

10.
Photoluminescent (PL) p-type 6H porous silicon carbides (PSCs), which showed a strong blue-green photoluminescence band centered at approximately 490 nm, were annealed in Ar and vacuum conditions. The morphological, optical, and chemical states after annealing are reported on electrochemically etched SiC semiconductors.The thermal treatments in the Ar and vacuum environments showed different trends in the PL spectra of the PSC. In particular, in the case of annealing in a vacuum, the PL spectra showed both a weak red PL peak near 630 nm and a relatively intense PL peak at around 430 nm in the violet region. SEM images showed that the etched surface had spherical nanostructures, mesostructures, and islands. With increasing annealing temperature it changes all spherical nanostructures. The average pore size observed at the surface of the PSC before annealing was of the order of approximately 10 nm.In order to investigate the surface of a series of samples in detail, both the detection of a particular chemical species and the electronic environments at the surface are examined using X-ray photoelectron spectroscopy (XPS). The chemical states from each XPS spectrum depend differently before and after annealing the surface at various temperatures. From these results, the PL spectra could be attributed not only to the quantum size effects but also to the oxide state.  相似文献   

11.
Pulsed-laser-based methods have been applied for post-implant annealing of p-type Al-doped 4H-SiC wafers in order to restore the crystal structure and to electrically activate the doping species. The annealing was performed with the third harmonic (355 nm) of a Nd:YAG laser at 4 ns pulse duration. The epilayers were characterized by micro-Raman spectroscopy under surface and cross-sectional backscattering. Changes in the phonon mode-intensity were related to the laser annealing induced recrystallization of the implanted material. The results were compared with changes in the infrared reflectivity across the Reststrahlen band. Transmission electron microscopy analysis showed the formation of columnar polycrystalline structure after the laser annealing process.  相似文献   

12.
13.
14.
It is found that single crystals of silicon carbide exposed to soft X rays exhibit luminescence in the visible spectral range. The luminescence intensity from the single crystals produced by different methods differs by three-to fivefold. Also, the emission intensity is nonuniformly distributed over the single crystal surface, which may be related to the nonuniform distribution of impurities (activators).  相似文献   

15.
Experiments are described which show that under pulsed thermal loading conditions, a damaged layer is formed in SiC which inherits the typical erosion defects (craters, chips, microcracks). Zh. Tekh. Fiz. 68, 133–135 (July 1998)  相似文献   

16.
《Applied Surface Science》1986,25(4):423-434
Silicon specimens which had been reactive ion etched in CF4/X%H2 (0≤ X ≤40) and subsequently air exposed have been characterised by X-ray photoelectron emission spectroscopy. Angular rotation was used to study films deposited by the plasma process onto the Si surface. In agreement with previous studies it is found that plasma exposure of Si specimens leads to the deposition of a fluorocarbon film. An intriguing new finding was the discovery of subsurface silicon carbide. The existence of this carbide layer was found to be independent of gas composition from 0–40% H2 for a one-minute plasma exposure. Helium ion channeling studies of the same specimens show Si near-surface disorder. A silicon-carbide formation mechanism is suggested according to which carbon is deposited below the Si surface by the bombardment of carbon containing ions, thus enabling silicon-carbon bonding.  相似文献   

17.
The thermopower coefficients of cubic bio-SiC, a high-porosity semiconductor with cellular pores prepared from the biocarbon template of white eucalyptus wood, and single-crystal β-SiC taken as a reference are measured in the temperature range 5–280 K. It is revealed that, in the low-temperature range, the samples are characterized by a thermopower contribution associated with the electron drag by phonons. The thermopower of the bio-SiC samples is measured both along and across the empty pore channels and is found to be anisotropic. Two models are proposed to account for the anisotropy of the thermopower in cubic bio-SiC.  相似文献   

18.
《Physics letters. A》2014,378(26-27):1897-1902
Spin-polarized density functional theory is used to study two-hydrogen defect complexes in silicon carbide. We find that the magnetism depends on the distances of the two hydrogen atoms. Magnetism appears when the two hydrogen defects are distant from each other, and magnetism cancels out if they are close to each other. The critical distance between the two hydrogen defects is determined.  相似文献   

19.
Systems of negative silicon carbide crystals are classified and studied by experimental methods. The crystal structure and morphology forming during growth, etching, and erosion are discussed.  相似文献   

20.
A novel electroless method of producing porous silicon carbide (PSiC) is presented. Unlike anodic methods of producing PSiC, the electroless process does not require electrical contact during etching. Rather, platinum metal deposited on the wafer before etching serves as a catalyst for the reduction of a chemical oxidant, which combined with UV illumination injects holes into the valence band, the holes subsequently participating in the oxidation and dissolution of the substrate. The etchant is composed of HF and K2S2O8 in water. Various porous morphologies are presented as a function of etchant concentration, time of etching, and SiC polytype. Wafer quality is of the utmost concern when utilizing the electroless wet etchant, since defects such as stacking faults, dislocations, and micropipes have a large impact on the resulting porous structure. Results of imaging and spectroscopic characterization indicate that the porous morphologies produced in this manner should be useful in producing sensors and porous substrates for overgrowth of low dislocation density epitaxial material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号