首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rotating magnetohydrodynamic flows of a thin layer of astrophysical and space plasmas with a free surface in a vertical external magnetic field are considered in the shallow water approximation. The presence of a vertical external magnetic field changes significantly the dynamics of wave processes in an astrophysical plasma, in contrast to a neutral fluid and a plasma layer in an external toroidal magnetic field. There are three-wave nonlinear interactions in the case under consideration. Using the asymptotic method of multiscale expansions, we have derived nonlinear equations for the interaction of wave packets: three magneto- Poincare waves, three magnetostrophic waves, two magneto-Poincare and one magnetostrophic waves, and two magnetostrophic and one magneto-Poincare waves. The existence of decay instabilities and parametric amplification is predicted. We show that a magneto-Poincare wave decays into two magneto-Poincare waves, a magnetostrophic wave decays into two magnetostrophic waves, a magneto-Poincare wave decays into one magneto-Poincare and one magnetostrophic waves, and a magnetostrophic wave decays into one magnetostrophic and one magneto-Poincare waves. There are the following parametric amplification mechanisms: the parametric amplification of magneto-Poincare waves, the parametric amplification of magnetostrophic waves, the amplification of a magneto-Poincare wave in the field of a magnetostrophic wave, and the amplification of a magnetostrophic wave in the field of a magneto-Poincare wave. The instability growth rates and parametric amplification factors have been found for the corresponding processes.  相似文献   

2.
3.
A simple shallow-water model with influence of external forcing on a β-plane is applied to investigate the nonlinear equatorial Rossby waves in a shear flow. By the perturbation method, the extended variable-coefficient KdV equation under an external forcing is derived for large amplitude equatorial Rossby wave in a shear flow. And then various periodic-like structures for these equatorial Rossby waves are obtained with the help of Jacobi elliptic functions. It is shown that the external forcing plays an important role in various periodic-like structures.  相似文献   

4.
A simple shallow-water model with influence of diabatic heating on a β-plane is applied to investigate the nonlinear equatorial Rossby waves in a shear flow. By the asymptotic method of multiple scales, the cubic nonlinear Schro^edinger (NLS for short) equation with an external heating source is derived for large amplitude equatorial envelope Rossby wave in a shear flow. And then various periodic structures for these equatorial envelope Rossby waves are obtained with the help of Jacob/elliptic functions and elliptic equation. It is shown that phase-locked diabatic heating plays an important role in periodic structures of rational form.  相似文献   

5.
Whistler-mode wave packets with fields exceeding the ambient dc magnetic field have been excited in a large, high electron-beta plasma. The waves are induced with a loop antenna with dipole moment either along or opposite to the dc field. In the latter case the excited wave packets have the topology of a spheromak but are propagating in the whistler mode along and opposite to the dc magnetic field. Field-reversed configurations with net zero helicity have also been produced. The electron magnetohydrodynamics fields are force free, have wave energy density exceeding the particle energy density, and propagate stably at subelectron thermal velocities through a nearly uniform stationary ion density background.  相似文献   

6.
于鑫  赵强 《中国物理快报》2009,26(3):310-312
Nonlinear waves in a Boussinesq fluid model which includes both the vertical and horizontal components of Coriolis force are studied by using the semi-geostrophic approximation and the method of travelling-wave solution. Taylor series expansion has been employed to isolate the characteristics of the linear Rossby waves and to identify the nonlinear shock and kink waves. The KdV-Burgers and the compound KdV-Burgers equations are derived, their shock wave and kink wave solution are also obtained.  相似文献   

7.
ABSTRACT

The propagation of magnetoacoustic (fast magnetohydrodynamic) waves in pair-ion (PI) fullerene plasma is studied in the linear and nonlinear regimes. The pair-ion (PI) fullerene plasma is theorized as homogeneous, magnetized, warm and collisionless. Employing multi-fluid magnetohydrodynamic model, the dispersion relation is obtained and wave dispersion effects which appear through ion inertial length are discussed. Using reductive perturbation technique (RPT), the Korteweg–de Vries (KdV) equation is derived and its solution for small but finite amplitude magnetoacoustic solitons propagating in the direction perpendicular to the external magnetic field is presented. The compressive magnetoacoustic soliton (i.e. positive potential pulse) propagating with super Alfvénic speed is obtained in magnetized PI fullerene plasma. The variations in the amplitude and width of the magnetoacoustic soliton structures are also illustrated by using numerical values of the plasma parameters such as ions' density, temperature difference between fullerene ions and magnetic field intensity, which have been taken from the PI plasma experiments already published in the literature.  相似文献   

8.
We study interactions of planetary waves propagating across the equator with trapped Rossby or Yanai modes, and the mean flow. The equatorial waveguide with a mean current acts as a resonator and responds to planetary waves with certain wave numbers by making the trapped modes grow. Thus excited waves reach amplitudes greatly exceeding the amplitude of the incoming wave. Nonlinear saturation of the excited waves is described by an amplitude equation with one or two attracting equilibrium solutions. In the latter case spatial modulation leads to formation of characteristic defects in the wave field. The evolution of the envelopes of long trapped Rossby waves is governed by the driven complex Ginzburg-Landau equation, and by the damped-driven nonlinear Schr?dinger equation for short waves. The envelopes of the Yanai waves obey a simple wave equation with cubic nonlinearity.  相似文献   

9.
In a computer simulation study, we have observed the parametric decay of an electromagnetic wave propagating parallel to the DC magnetic field into two electron electrostatic waves. We have identified the mechanism as three-wave parametric interaction. The growth constants of the decay waves have been measured. After saturation, the decay waves are observed to trap electrons. Consequently, the velocity distribution function develops a high velocity tail. The details of these processes are discussed. We have found that the kinetic energy of the total assembly of electrons will increase by about a factor of four.  相似文献   

10.
The nonlinear generation of second harmonic electromagnetic waves in a thin inhomogeneous (dense and rarefied) plasma layer (of lengthd) by obliquely and normally incident light waves is analyzed. We consider the effect of an external time-dependent magnetic field on the generation and amplification of waves. Two cases are considered, when the magnetic field oscillates at a frequency (i) equal to and (ii) double that of the incident wave. For normal incidence, waves are not radiated in case (i), while in case (ii) the second harmonics are radiated equally from the plasma boundaries atx=0 andx=d. For a rarefied plasma, the second harmonics are radiated with equal amplitudes in both cases.  相似文献   

11.
A weak turbulence of the magnetohydrodynamic waves in a strongly magnetized plasma was studied in the case when the plasma pressure is small as compared to the magnetic field pressure. In this case, the principal nonlinear mechanism is the resonance scattering of fast magnetoacoustic and Alfvén waves on slow magnetoacoustic waves. Since the former waves are high-frequency (HF) with respect to the latter, the total number of HF waves in the system is conserved (adiabatic invariant). In the weak turbulence regime, this integral of motion generates a Kolmogorov spectrum with a constant flux of the number of HF waves toward the longwave region. The shortwave region features a Kolmogorov spectrum with a constant energy flux. An exact angular dependence of the turbulence spectra is determined for the wave propagation angles close to the average magnetic field direction.  相似文献   

12.
Pruneri V  Longhi S 《Optics letters》2000,25(23):1720-1722
Optical parametric interaction in isotropic third-order nonlinear media with magneto-optic properties is investigated. It is shown that new phase-matching conditions with a magneto-optic contribution are possible. In particular, we study four-wave mixing and electric field-induced three-wave parametric processes in the presence of a magnetic field applied along the direction of propagation of the interacting waves. Control of the new phase-matching branches can be achieved by tuning of the magnetic field.  相似文献   

13.
It is shown that, in the undepleted pump approximation, the nonlinear problem of the three-wave parametric interaction under the conditions of phase mismatch can be reduced to a problem of linear interaction of the signal and idle waves with a strong low-frequency pump wave. The whole wave packet formed by the two waves breaks down to partial pulses whose dynamics is controlled by effective dispersion parameters. This can be accompanied by the compression of either one of the pulses that comprises the wave packet or the whole wave packet.  相似文献   

14.
A theoretical investigation has been made of nonlinear propagation of ultra-low-frequency electromagnetic waves in a magnetized two fluid (negatively charged dust and positively charged ion fluids) dusty plasma. These are modified Alfvén waves for small value of and are modified magnetosonic waves for large , where is the angle between the directions of the external magnetic field and the wave propagation. A nonlinear evolution equation for the wave magnetic field, which is known as Korteweg de Vries (K-dV) equation and which admits a stationary solitary wave solution, is derived by the reductive perturbation method. The effects of external magnetic field and dust characteristics on the amplitude and the width of these solitary structures are examined. The implications of these results to some space and astrophysical plasma systems, especially to planetary ring-systems, are briefly mentioned. Received 8 July 1999 and Received in final form 11 October 1999  相似文献   

15.
Nonlinear phenomena that arise during the propagation of spin waves in thin ferromagnetic films under conditions of the simultaneous existence of three-wave and four-wave parametric processes have been investigated. Investigations have been performed for single-frequency and double-frequency regimes of excitation of intense spin waves. The spontaneous modulation instability of the monochromatic running spin wave has been revealed for the first time at frequencies at which three-wave decay processes are allowed. The pronounced generation of a periodic sequence of bright spin wave solitons has been observed under excitation of two monochromatic spin waves at the same frequencies.  相似文献   

16.
Plasma being a nonlinear and complex system, is capable of sustaining a wide spectrum of waves, oscillations and instabilities. These fluctuations interact nonlinearly amongst themselves and also with particles: electrons/ions and thus lead to nonlinear wave-wave or wave-particle interaction. In the presence of coherent waves the particles are accelerated whereas irregular oscillations can give rise to particle heating which is also called stochastic heating. Particle orbits are known to be randomized by the wave fields such that their motion can also become stochastic. For fusion to be sustained one needs a very high temperature plasma for an extended duration. It quite common to deploy external waves like electron cyclotron waves or ion cyclotron waves for plasma heating and current drive. These external waves also work only in certain regimes. Conventional plasma techniques have been able to answer several of the observations of the above processes related to heating transport etc, but nonlinear dynamics as a tool has helped in comprehending the plasma oscillations better. We have for the first time obtained a Third Order nonlinear ordinary differential equation (TONLODE) also known as jerk equation to describe the electrostatic ion cyclotron plasma oscillations in a magnetic field. The interesting feature of this equation is that it does not require an external forcing term to obtain chaotic behaviour.  相似文献   

17.
The dissipative nonlinear Schrödinger equation with a forcing item is derived by using of multiple scales analysis and perturbation method as a mathematical model of describing envelope solitary Rossby waves with dissipation effect and external forcing in rotational stratified fluids. By analyzing the evolution of amplitude of envelope solitary Rossby waves, it is found that the shear of basic flow, Brunt-Vaisala frequency and β effect are important factors in forming the envelope solitary Rossby waves. By employing Jacobi elliptic function expansion method and Hirota's direct method, the analytic solutions of dissipative nonlinear Schrödinger equation and forced nonlinear Schrödinger equation are derived, respectively. With the help of these solutions, the effects of dissipation and external forcing on the evolution of envelope solitary Rossby wave are also discussed in detail. The results show that dissipation causes slowly decrease of amplitude of envelope solitary Rossby waves and slowly increase of width, while it has no effect on the propagation speed and different types of external forcing can excite the same envelope solitary Rossby waves. It is notable that dissipation and different types of external forcing have certain influence on the carrier frequency of envelope solitary Rossby waves.  相似文献   

18.
In the lowest order of approximation quasi-two-dimensional dynamics of planetary atmospheres and of plasmas in a magnetic field can be described by a common convective vortex equation, the Charney and Hasegawa-Mima (CHM) equation. In contrast to the two-dimensional Navier-Stokes equation, the CHM equation admits "shielded vortex solutions" in a homogeneous limit and linear waves ("Rossby waves" in the planetary atmosphere and "drift waves" in plasmas) in the presence of inhomogeneity. Because of these properties, the nonlinear dynamics described by the CHM equation provide rich solutions which involve turbulent, coherent and wave behaviors. Bringing in nonideal effects such as resistivity makes the plasma equation significantly different from the atmospheric equation with such new effects as instability of the drift wave driven by the resistivity and density gradient. The model equation deviates from the CHM equation and becomes coupled with Maxwell equations. This article reviews the linear and nonlinear dynamics of the quasi-two-dimensional aspect of plasmas and planetary atmosphere starting from the introduction of the ideal model equation (CHM equation) and extending into the most recent progress in plasma turbulence.  相似文献   

19.
The parametric instability of surface waves on the second harmonic of electron cyclotron frequency (SWCF) in a plasma filled dielectric wave guide is examined in a kinetic approximation. The studied surface waves are extraordinary polarized modes and propagate across the external steady magnetic field. The amplitude of the electrical pump wave is assumed to be small. Simple expressions for increments of the parametric instability of the SWCF are calculated. The otained results can be used in controlled fusion researches in order to avoid undesirable regimes of plasma periphery heating in that fusion devices which use the resonance electron cyclotron heating method.  相似文献   

20.
P.K.C. Wang 《Physica A》1975,81(3):441-453
The existence of phase-invariant solutions for a class of nonlinear wave-wave interacting systems is studied. These solutions have the property that the phase of each wave is invariant with time or unaffected by the nonlinear interactions. Explicit results are obtained for certain two-wave and three-wave systems. It is shown that for these systems, the wave-energy transfer along the phase-invariant solutions is always unidirectional. The application of these results to the non-inear interaction between two transverse waves and a longitudinal wave in a magnetized collisionless plasma is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号