首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Immunoassays such as ELISAs and Western blotting have been the common choice for protein validation studies for the past several decades. Technical advancements and modifications are continuously being developed to enhance the detection sensitivity of these procedures. Among them, Streptavidin‐containing poly‐horseradish peroxidase (PolyHRP) based detection strategies have been shown to improve signals in ELISA. The use of commercially available Streptavidin and antibodies conjugated with many HRPs (PolyHRPs) to potentially enhance the detection sensitivity in Western blotting has not been previously investigated in a comprehensive manner. The use of PolyHRP‐secondary antibody instead of HRP‐secondary antibody increased the Western blotting sensitivity up to 85% depending on the primary antibody used. The use of a biotinylated secondary antibody and commercially available Streptavidin‐conjugated with HRP or PolyHRP all resulted in increased sensitivity with respect to antigen detection. Utilizing a biotinylated secondary antibody and Streptavidin‐conjugated PolyHRP resulted in as much as a 110‐fold increase in Western blotting sensitivity over traditional Western blotting methods. Quantification of troponin I in rat heart lysates showed that the traditional Western blotting method only detected troponin I in ≥2 μg of lysate while Streptavidin‐conjugated PolyHRP20 detected troponin I in ≥50 ng of lysate. A modified blocking procedure is also described that eliminated the interference caused by the endogenous biotinylated proteins. These results suggest that Streptavidin‐conjugated PolyHRP and PolyHRP secondary antibodies are likely to be commonly utilized for Western blots in the future.  相似文献   

2.
This paper reports the usefulness of two-dimensional gel electrophoresis followed by Western blotting with sera from patients with systemic candidiasis in the identification of the major Candida albicans antigens. In order to have different patterns of protein expression and subcellular localization, three types of protein preparations were obtained: cytoplasmic extracts, protoplast lysates and proteins secreted by protoplasts regenerating their cell wall. These proteins were separated by high-resolution two-dimensional electrophoresis using an immobilized pH gradient. Western blotting with sera from patients with systemic candidiasis allowed the detection of more than 18 immunoreactive proteins. Some of these proteins had different isoforms. All sera reacted with at least three C. albicans proteins and the most reactive serum detected up to eleven proteins. Some of these antigens, e.g., enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), have been identified on the 2-D map. The most reactive proteins were enolase and a 34 kDa protein in the acidic part of the gel (pI 4-4.4) that was only detected in regenerating protoplast-secreted proteins. The identification of all these antigens would be useful for the development of diagnostic strategies.  相似文献   

3.
The Pharmacia PhastSystem equipment has been used for crossed immunoelectrophoresis combined with a technique for immunoblotting with monoclonal antibodies. This miniaturized gel system is compared to the conventional approach using platelet membrane receptor proteins as a model. Whereas in the conventional system the electrophoretic procedure takes place within 20 h, 3 h are adequate for the small gel system. Because of the short second-dimensional electrophoresis, and only one overnight incubation, the total electrophoretic and blotting procedure could be reduced from about 48 h to 24 h. The amount of antiserum used during the second-dimensional electrophoresis could be reduced roughly by a factor of 5. The examples with electrophoresis and immunoblotting using platelet extracts in 1% Triton X-100 demonstrate that membrane receptor proteins can be studied even when present as noncovalent complexes. The immunoblotting can be used with monoclonal antibodies that do not function in Western blotting.  相似文献   

4.
The design of an extended-run 96-well sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) system and the development of protein detection technology based upon fluorescein derivatives that bind to peptide epitope tags, allows the creation of a truly high-throughput analysis of protein expression, where less than 20 min are needed to separate proteins and analyze results. We demonstrate the overall capabilities of such a method combination in a complex cell lysate background, while comparing the specific results obtained using a biarsenical fluorescein-derivative and tetracysteine epitope-tagged proteins with total protein staining using a fluorescent gel stain and with Western blotting where an anti-oligohistidine (His) tag antibody has been employed. When applied on purified target proteins without extraneous protein background, the demonstrated sensitivity of the assay on the extended-run 96-array precast SDS-PAGE system allows detection of quantities of tagged protein as low as 1 pmol per band.  相似文献   

5.
The aim of this study was to characterize mammalian glycosyl phosphatidylinositol (GPI)-anchored proteins y two-dimensional gel electrophoresis using immobilized pH gradients. Analysis was performed on detergent-resistant membrane fractions of baby hamster kidney (BHK) cells, since such fractions have previously been shown to be highly enriched in GPI-anchored proteins. Although the GPI-anchored proteins were readily separated by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), these proteins were undetectable on two-dimensional (2-D) gels, even though these gels unambiguously revealed high enrichment of known hydrophobic proteins of detergent-resistant membranes such as caveolin-1 and flotillin-1 (identified by Western blotting and tandem mass spectrometry, respectively). Proper separation of GPI-anchored proteins required cleavage of the lipid tail with phosphatidylinositol-specific phospholipase C, presumably to avoid interference of the hydrophobic phospholipid moiety of GPI-anchors during isoelectric focusing. Using this strategy, BHK cells were observed to contain at least six GPI-anchored proteins. Each protein was also present as multiple isoforms with different isoelectric points and apparent molecular weights, consistent with extensive but differential N-glycosylation. Pretreatment with N-glycosidase F indeed caused the different isoforms of each protein to collapse into a single spot. In addition, quantitative removal of N-linked sugars greatly facilitated the detection of heavily glycosylated proteins and enabled sequencing by nanoelectrospray-tandem mass spectrometry as illustrated for the GPI-anchored protein, Thy-1.  相似文献   

6.
7.
In Western blotting, a suitable loading control is indispensable for correcting errors in the total amount of loaded protein. Immunodetection of housekeeping proteins and total protein staining have traditionally been used as loading control methods. Direct Blue 71 (DB71) staining—a novel, sensitive, dye‐binding staining method compatible with immunodetection—may offer advantages over these traditional loading control methods. Three common neuroscientific samples (human plasma, human oligodendrocytes, and rat brain) were employed to assess DB71 staining as a loading control method for Western blotting. DB71, CBB, one traditional housekeeping protein, and one protein of interest were comparatively assessed for reliability and repeatability and linear dynamic range over 2.5–40 μg of protein loaded. DB71's effect on the reliability and repeatability and linear dynamic range of immunoreaction were also assessed. Across all three sample types, DB71 was either equivalent or superior to CBB and housekeeping protein‐based methods in terms of reliability and repeatability and linear dynamic range. Across all three sample types, DB71 staining did not impair the reliability and repeatability or linear dynamic range of immunoreaction. Our results demonstrate that the DB71 staining can be used as a destaining‐free alternative loading control method for Western blotting.  相似文献   

8.
Chang M  Hsu HY  Lee HJ 《Electrophoresis》2005,26(16):3062-3068
Protein molecular weight markers are widely used in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting. Here, we describe novel protein molecular weight markers in which a prestaining procedure is no longer needed. Green fluorescent protein (GFP) is stable and resistant to denaturing agents/conditions. Various histidine-tagged GFP fusion proteins were overexpressed in Escherichia coli and purified by metal affinity chromatography. The minimal amount of each protein marker needed for analysis in SDS-PAGE and Western blot under visible light was 62.5 and 125 ng, respectively. Under ultraviolet (UV) ray, the minimal amount of each protein marker needed for analysis in SDS-PAGE and Western blot was half of those amounts used under visible light, respectively. Collectively, the accuracy, sensitivity, ease, economy, and flexibility of our strategy may reinforce the application of GFP in molecular biology.  相似文献   

9.
We have chemically synthesised a number of ubiquitin extension proteins, with carboxyl-terminal single amino acid residue extensions, to use as substrates to assess the catalytic capacities of deubiquitinating enzymes (DUBs). Here we describe a modified acrylamide gel electrophoresis system which allows separation of peptide- or isopeptide-linked ubiquitin-lysine from ubiquitin (77 and 76 residue proteins respectively) in only 2 h. Western blotting, using antibodies against ubiquitin, allows both substrate (i.e. ubiquitin-lysine) and product (i.e. ubiquitin) of DUB-catalyzed cleavage reactions to be detected. Catalytic capacities of DUBs may be indicative of in vivo functions of these proteases.  相似文献   

10.
Poland J  Böhme A  Schubert K  Sinha P 《Electrophoresis》2002,23(24):4067-4071
Currently, one of the most important techniques in proteome analysis is two-dimensional electrophoresis that is widely used for separation of thousands of different protein spots. Nevertheless, characterization of special aspects in protein patterns, e.g., separation of protein isoforms generated by post-translational modifications, requires individual detection methods, e.g., immunoblotting. Blotting of proteins after fractionation in immobilized pH gradients has always caused some problems. In this paper we present an optimized protocol for immunoblotting after isoelectric focusing using immobilized pH gradient (IPG) strips cast on Net-Fix as an internal support that is permeable to electric current. The focusing procedure can be carried out in commonly used IPG systems, e.g., the IPGphor by Amersham Biosciences, where electrically assisted rehydration can be performed. This may be of interest for many laboratories, because the same system as used for the first dimension of two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) is involved. As an example, we describe separation and detection of up to seven isoforms of recombinant erythropoietin beta using semidry blotting of IPG strips and visualization by chemiluminescence detection.  相似文献   

11.
We used the recombinant phage display antibody system (RPAS) to obtain chimeric single-chain fragment variable (ScFv) antibodies to gill proteins of the white clam Codakia orbicularis (Linné, 1758). After three rounds of selection on immunotubes loaded with total gill protein extract, recombinant phages exhibiting antibodies to gill proteins were isolated and tested by enzyme-linked immunosorbent assay (ELISA). Clones exhibiting a high affinity for the mollusk proteins were selected for production of soluble ScFv antibodies, which were purified for subsequent analysis. ScFv antibodies exhibited a reaction specific for a protein whose molecular mass was about 15,000 Daltons and that was detected by the antigen capture technique followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and Western blotting.  相似文献   

12.
Different search programs were compared to judge their particular efficiency in protein identification. We established a human blood platelet protein map and identified tyrosine-phosphorylated proteins. The cytosolic fraction of human blood platelets was separated by two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) and phosphorylated proteins were detected by Western blotting using anti-phosphotyrosine antibodies. Visualized protein spots were excised, digested with trypsin and analyzed by matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). The obtained mass fingerprint data sets have been analyzed using ProFound, MS-Fit and Mascot. For those protein spots with no significant search results MALDI post source decay (PSD) spectra have been acquired on the same sample. For automatic interpretation of these fragment ion spectra, the SEQUEST and Mascot algorithm were applied. Another approach for the identification of phosphorylated proteins is immunoprecipitation using an anti-phosphotyrosine antibody. A method for immunoprecipitation of tyrosine-phosphorylated peptides was optimized.  相似文献   

13.
Levels of a reference protein must be the same as a proportion of total protein in all tissues and, in the study of human diseases, cannot vary with factors such as age, gender or disease pathophysiology. It is increasingly apparent that there may be few, if any, proteins that display the characteristics of a reference protein within the human central nervous system (CNS). To begin to challenge this hypothesis, we used Western blotting to compare variance in levels of the “gold standard” reference protein, β‐actin, in Brodmann's area 9 from 194 subjects to variance of total transferred protein measured as intensity of Ponceau S staining. The coefficient of variance of sum intensity measurements for β‐actin levels across all donors was 47% compared to 24 and 27% for the sum intensity of Ponceau S staining measured using two different detection techniques. These data strongly suggest that the level of β‐actin, proportional to total protein, is not constant in human cortex which raises further doubt about the use of reference proteins to normalise data in human CNS studies. Considering our data, we suggest an alternative approach to presenting data from Western blotting of human CNS.  相似文献   

14.
Synaptic pathology is central in the pathogenesis of several psychiatric disorders, for example in Alzheimer's disease (AD) and schizophrenia. Quantification of specific synaptic proteins has proved to be a useful method to estimate synapitc density in the brain. Using this approach, several synaptic proteins have been demonstrated to be altered in both AD and schizophrenia. Until recently, the analysis of synaptic pathology has been limited to postmortem tissue. In living subjects, these synaptic proteins may be studied through analysis of cerebrospinal fluid (CSF). In an earlier study performed by us, one synaptic vesicle specific protein, synaptotagmin, was detected in CSF for the first time using a procedure based on affinity chromatography, reversed-phase chromatography, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and chemiluminescence immunoblotting. However, other synaptic proteins were not detectable with this procedure. Therefore, we have developed a procedure including precipitation of CSF proteins with trichloroacetic acid, followed by liquid-phase isoelectric focusing using the Rotofor Cell, and finally analysis of Rotofor fractions by Western blotting for identification of synaptic proteins in CSF. Five synaptic proteins, rab3a, synaptotagmin, growth-associated protein (GAP-43), synaptosomal-associated protein (SNAP-25) and neurogranin, have been demonstrated in CSF using this method. The major advantage of liquid-phase isoelectric focusing (IEF) using the Rotofor cell is that it provides synaptic proteins from CSF in sufficient quantities for identification. This method may also be suitable for identification of other types of trace amounts of brain-specific proteins in CSF. These results demonstrate that several synaptic proteins can be identified and measured in CSF to study synaptic function and pathology in degenerative disorders.  相似文献   

15.
Western blotting is a highly valued method for protein identification and relative quantitation in complex samples. It combines size-based electrophoretic separation with immunoaffinity to identify specific proteins. This technique remains popular and has become a workhorse in biochemical research and clinical laboratories. Despite its utility and popularity, this method has many limitations including slow analysis, incompatibility with limited sample application, low throughput and low information content. Recently there has been significant success in improving different aspects of Western blotting. In this review, we provide an overview of the developments in the area of improving conventional Western blotting methods with a focus on recent developments in microfluidic Western blotting. We overview different separation platforms, and discuss studies on protein transfer methods as well as protein immobilization methods and chemistries. We also describe integrated miniaturized platforms that can perform rapid separations and immunodetections.  相似文献   

16.
We have reexamined the detection of the components in a beta-mercaptoethanol and ammonium carbonate buffer extract of surface proteins of Candida albicans and the effects of postextraction manipulation of the extract on recovery of extract components. Following sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), preferential staining of some moieties was observed when bands detected by a commercial silver staining method or a Coomassie Brilliant Blue (CBB) staining method were compared. Additional protein bands that were either not detected or poorly detected by a single method alone were readily observed by a combined silver-CBB staining method. This method also detected alterations in the profile of extracted proteins from organisms grown in the presence of galactose or hemoglobin rather than glucose. Two-dimensional electrophoresis (2-DE) gel analysis by double stain showed better detection of several acidic and basic protein spots. Less than 10% of the extract as determined by a dye-binding assay was lost following either or both lyophilization and dialysis. These manipulations of the extract did not change the protein profile following SDS-PAGE as determined by the combined staining or Western blot analysis of a 70 kDa protein. These observations suggest that soluble cell wall proteins are not unusually sensitive to procedures routinely used in protein purification. In addition, these studies suggest that a modified staining method that combines both silver stain and CBB stain provides improved detection of cell wall proteins compared to either method alone.  相似文献   

17.
The electrophoretic separation of high-molecular-weight proteins (> 500 kDa) using polyacrylamide is difficult because gels with a large enough pore size for adequate protein mobility are mechanically unstable. A 1% vertical sodium dodecyl sulfate (SDS)-agarose gel electrophoresis (VAGE) system has been developed that allows titin (a protein with the largest known SDS subunit size of 3000-4000 kDa) to migrate over 10 cm in a approximately 13 cm resolving gel. Such migration gives clear and reproducible separation of titin isoforms. Proteins ranging in size from myosin heavy chain ( approximately 220 kDa) up to titin can be resolved on this gel system. Electroblotting of these very large proteins was nearly 100% efficient. This VAGE system has revealed two titin size variants in rabbit psoas muscle, two N2BA bands in rabbit cardiac muscle, and species differences between titins from rat and rabbit muscle. Agarose electrophoresis should be the method of choice for separation and blotting of proteins with very large subunit sizes.  相似文献   

18.
An improved procedure, "thermoblotting", is described for transferring proteins by diffusion from PhastGel Gradient media to an immobilizing matrix after horizontal sodium dodecyl sulfate-polyacrylamide gel electrophoresis. After electrophoresis the gels were left on the separation bed of PhastSystem, the blotting matrix was applied and a transfer temperature was selected between 5-70 degrees C. An experimental series at fixed diffusion times showed that the transfer yield was significantly increased with temperature. The evaluation was done visually after staining of the blots with colloidal gold. An evaluation study comparing nitrocellulose, nylon, and polyvinylidenedifluoride of different pore sizes is also reported. Finally, the transfer efficiencies for 125I-labelled bovine serum albumin and soybean trypsin inhibitor were estimated using four different blotting procedures: two diffusion blotting techniques and two electrophoretic blotting techniques (tank vs. semi-dry).  相似文献   

19.
Since most high throughput techniques used in biomarker discovery are very time and cost intensive, highly specific and quantitative analytical alternative application methods are needed for the routine analysis. Conventional Western blotting allows detection of specific proteins to the level of single isotypes while its quantitative accuracy is rather limited. We report a novel and improved quantitative Western blotting method. The use of fluorescently labelled secondary antibodies strongly extends the dynamic range of the quantitation and improves the correlation with the protein amount (r=0.997). By an additional fluorescent staining of all proteins immediately after their transfer to the blot membrane, it is possible to visualise simultaneously the antibody binding and the total protein profile. This allows for an accurate correction for protein load. Applying this normalisation it could be demonstrated that fluorescence-based Western blotting is able to reproduce a quantitative analysis of two specific proteins in blood platelet samples from 44 subjects with different diseases as initially conducted by 2D-DIGE. These results show that the proposed fluorescence-based Western blotting is an adequate application technique for biomarker quantitation and suggest possibilities of employment that go far beyond.  相似文献   

20.
Affinity probe capillary electrophoresis (APCE) is potentially one of the most versatile technologies for protein diagnostics, offering an excellent balance between robustness, analysis speed and sensitivity. Combining the immunosensing and separating strength of capillary electrophoresis with the signal enhancement power of nucleic acid amplification, aptamers can further push the analytical limits of APCE to offer ultrasensitive, multiplexed detection of protein biomarkers, even when differences in electrophoretic mobility between the different aptamer-target complexes are limited. It is demonstrated how, through careful selection of experimental parameters, simultaneous detection of picomolar levels of three target proteins can be achieved even with aptamers that were initially selected under very different conditions and further taking into account that the aptamers need to be modified to allow successful PCR amplification. Aptamer-enhanced APCE offers limits of detection that are orders of magnitude lower than those that can be achieved through traditional capillary electrophoresis-based immunosensing. With recent developments in aptamer selection that for the first time realise the promise of aptamers as easily accessible, high affinity recognition molecules, it can therefore be envisioned that aptamer-enhanced APCE on parallel microfluidic platforms can be the basis for a truly high-throughput multiplexed proteomics platform, rivalling genetic screening for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号