共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
分别用溶胶凝胶法和分步沉淀法制备了MnOx+γ-Al2O3和MnOx/γ-Al2O3,用等体积浸渍法将等量的Pd(NO3)2分别浸渍于其上,再将它们分别涂覆于堇青石上,得到不同物理化学性质的整体式催化剂,并采用X射线衍射、X射线光电子能谱、程序升温还原和低温N2吸附-脱附等技术对催化剂进行表征.结果表明,制备方法和MnOx焙烧温度明显影响催化剂中MnOx的物相、表面Mn物种和表面活性氧物种的分布及织构性质.活性测试结果表明,两种制备方法得到的催化剂于16–90 oC,380000–580000 h–1条件下均可将0.6μL·L–1 O3完全分解;尤其是溶胶凝胶法制备的Pd/γ-Al2O3+MnOx/γ-Al2O3催化剂分解O3活性较好,催化剂表面Mn2+:Mn3+:Mn4+=1.7:1:3(mol). 相似文献
3.
整体式锰基催化剂催化分解地表臭氧 总被引:1,自引:0,他引:1
通过焙烧碳酸锰粉末制备了高活性含缺陷氧原子的氧化锰材料(MnOx, x=1.6~2.0), 用胶溶法制备了高比表面积的SiO2-Al2O3载体,然后用等体积浸渍法制备了不同MnOx担载量的Pd-MnOx/SiO2-Al2O3系列催化剂. 结果表明,催化剂活性随MnOx含量的增加而增加,但无载体的MnOx催化剂易脱落,活性降低. 在空速(GHSV)为 360 000 h-1 的条件下, MnOx含量为80%的催化剂对O3的完全转化温度(T100)为30 ℃; 在GHSV=660 000 h-1 时, MnOx含量在80%~90%的催化剂活性最高, T100 为45~50 ℃, 能满足在汽车运行时空气与汽车水箱瞬时接触温度的要求. 在45 ℃和 510 000 h-1 条件下对MnOx担载量为80%的催化剂进行 95 h 寿命测试后, O3的转化率大于90%, 说明催化剂具有很强的抗失活能力. 相似文献
4.
将原料Ni(NO3)2·6H2O、Mn3O4粉末和拟薄水铝石用球磨机球磨,以所得的浆料浸渍堇青石,经过焙烧,得到不同比例的NiO/Mn3O4催化剂。 通过催化分解臭氧活性测试发现,在空速为20000 h-1时, 30NiO/Mn3O4(NiO占总质量的30%)催化剂的活性最高,臭氧分解率达到98%,催化剂活性稳定。 当提高空速为40000 h-1,50NiO/Mn3O4(NiO占总质量的50%)催化剂的活性最高,臭氧分解率在90%左右,并且出现失活现象。 通过X射线衍射(XRD)、程序升温(TPR)、X射线光电子能谱分析(XPS)、BET比表面积法等表征,发现Mn3O4和NiO复合催化剂的比表面积大于单一金属氧化物催化剂的比表面积并且在Mn3O4和NiO复合催化剂中Mn3O4与NiO发生电子相互作用。 催化剂中的Mn3O4与NiO的协同催化作用。 使得Mn3O4与NiO混合物催化剂的还原温度降低,分解臭氧(O3)活性提高。 相似文献
5.
分别用溶胶凝胶法和分步沉淀法制备了MnOx+γ-Al2O3和MnOx/γ-Al2O3,用等体积浸渍法将等量的Pd(NO3)2分别浸渍于其上,再将它们分别涂覆于堇青石上,得到不同物理化学性质的整体式催化剂,并采用X射线衍射、X射线光电子能谱、程序升温还原和低温N2吸附-脱附等技术对催化剂进行表征.结果表明,制备方法和MnOx焙烧温度明显影响催化剂中MnOx的物相、表面Mn物种和表面活性氧物种的分布及织构性质.活性测试结果表明,两种制备方法得到的催化剂于16–90 oC,380000–580000 h–1条件下均可将0.6μL·L–1 O3完全分解;尤其是溶胶凝胶法制备的Pd/γ-Al2O3+MnOx/γ-Al2O3催化剂分解O3活性较好,催化剂表面Mn2+:Mn3+:Mn4+=1.7:1:3(mol). 相似文献
6.
分别用溶胶凝胶法和分步沉淀法制备了MnOx+γ-Al2O3和MnOx/γ-Al2O3,用等体积浸渍法将等量的Pd(NO3)2分别浸渍于其上,再将它们分别涂覆于堇青石上,得到不同物理化学性质的整体式催化剂,并采用X射线衍射、X射线光电子能谱、程序升温还原和低温N2吸附-脱附等技术对催化剂进行表征.结果表明,制备方法和MnOx焙烧温度明显影响催化剂中MnOx的物相、表面Mn物种和表面活性氧物种的分布及织构性质.活性测试结果表明,两种制备方法得到的催化剂于16–90 oC,380000–580000 h–1条件下均可将0.6μL·L–1 O3完全分解;尤其是溶胶凝胶法制备的Pd/γ-Al2O3+MnOx/γ-Al2O3催化剂分解O3活性较好,催化剂表面Mn2+:Mn3+:Mn4+=1.7:1:3(mol). 相似文献
7.
8.
CeO2和La2O3改性Pd/γ—AI2O3甲醇低温分解催化剂的研究I.CeO2改性Pd/γ—AI2O3催化剂的结构和性能 总被引:3,自引:0,他引:3
用XRD,BET,NH3-TPD,TPR及XPS等手段对CeO2改性Pd/γ-AI2O3催化剂的结构和性能进行了表征,并考察了催化剂上甲醇低温分解的性能。结果表明,CeO2在γ-AI2O3载体上容易容易,能完成掩蔽其表面酸性,并较大程度地降低了载体的比表面积;CeO2的加入促进了Pd在载体上的分散,并且产生一种协同还原作用,Pd的高度分散及其与CeO2在γ-AI2O3上的相互作用是催化剂具有高活性的关键。 相似文献
9.
用流动型反应装置,对8W杀菌灯(主波长λ=253.7nm)辐照空气时产生的臭氧进行了研究.发现在一定条件下当空气与杀菌灯接触大约7s时,就有超出0.33μg/L的臭氧产生.随着空气流速的减小,产生的臭氧的量随之变大.采用臭氧分解催化剂对臭氧的消除进行了研究,当体积空速小于1.1×105h-1时,臭氧可以降解到安全范围. 相似文献
10.
研究了Ni/Fe催化剂对废水中偏二甲肼臭氧化分解的催化作用,考察了组分含量、体系的pH值和偏二甲肼初始浓度对催化反应的影响.结果表明,Ni/Fe催化剂对水中偏二甲肼的臭氧化具有良好的催化活性.催化剂组分含量、体系的pH值和初始浓度对反应的影响程度不大.对催化剂的XRD表征结果表明,催化剂主要由尖晶石结构的铁酸盐和FeNi3合金相组成,催化剂的良好催化性能与催化剂中尖晶石结构的铁酸盐和FeNi3合金相的形成有关. 相似文献
11.
12.
活性炭负载金催化分解空气中低浓度臭氧 总被引:3,自引:0,他引:3
采用等体积浸渍法制备了以煤质活性炭为载体的负载金催化剂,并运用N2吸附-脱附法和X射线光电子能谱对样品进行了表征.考察了该催化剂催化分解低浓度臭氧的活性,并研究了载体预处理方法和催化剂后处理方法对催化剂活性的影响.在常温,相对湿度为60%,臭氧浓度为45 mg/m3,空速为60 000 h-1的条件下,1.6 g活性炭经HNO3和NaBH4处理后负载金再经H2还原后的催化剂在反应最初的16 h内臭氧去除率稳定在100%,反应100 h后对臭氧的去除率仍在97%以上.表征结果表明,NaBH4还原处理使得活性炭比表面积、孔体积及石墨碳含量增加,含氧官能团下降,从而提高了催化剂的活性.载金后,催化剂比表面积和孔体积进一步增大,但石墨碳含量下降,C-O和COO-等含氧官能团增加.经臭氧氧化后,催化剂的比表面积和孔体积减小,石墨碳含量下降,C-O,COO-和C=O等含氧官能团增加,而金的粒径和价态并未改变,表明活性炭在金催化下被臭氧氧化. 相似文献
13.
Au/TiO2光催化分解臭氧 总被引:7,自引:0,他引:7
采用沉积-沉淀法制备了Au/TiO2催化剂,用透射电子显微镜、紫外-可见漫反射光谱和X射线光电子能谱进行了表征,结果表明,样品在空气中于200 ℃处理后,金以金属态Au0的形式沉积在TiO2表面. 与TiO2相比,担载金的TiO2具有明显的光催化分解O3的活性. 黑光灯光照20 h后, 1%Au/TiO2催化剂对O3的分解率仍达98%以上. TiO2上的Au簇作为电子的捕获中心,能够促使电子与空穴的有效分离. 而Au簇和载体TiO2的周界处作为O3新的吸附活性中心,促进了O3的分解. 相似文献
14.
TiO2晶型对Au/TiO2上光催化分解臭氧的影响 总被引:1,自引:0,他引:1
以不同晶型TiO2为载体,采用沉积-沉淀法制备了Au/TiO2光催化剂,并用紫外-可见漫反射光谱、X射线光电子能谱(XPS)和表面光电压谱(SPS)等手段进行了催化剂表征,详细考察了Ti O2晶型对Au/TiO2光催化分解臭氧活性的影响.结果表明,光催化分解臭氧的活性顺序为Au/P25>Au/Anatase>Au/Rutile,这与不同的单一Ti O2对光催化臭氧分解的活性顺序是一致的.但在TiO2上沉积金后,其对光催化臭氧的分解活性有了显著的提高.由催化剂的Au4fXPS分析发现,不同晶型Ti O2上的电荷向金簇迁移的能力有明显差异,加之载体本身对光催化臭氧分解活性不同,两者协同作用导致负载金催化剂光催化分解臭氧活性的不同.SPS信号强度与催化剂光催化活性有很好的对应关系,SPS信号越强,光生电子和空穴分离效率越高,光催化活性越好. 相似文献
15.
The aim of this study is to identify relationships between volatile organic components (VOCs) and transient high ozone formation in the Houston area. The ozone is not emitted to the atmosphere directly but is formed by chemical reactions in the atmosphere. In Houston, short-term (1 h) sharp increases are observed followed by a rapid decrease back to typical concentrations. Automatic gas chromatographs (GCs) are operated at several sites which cryogenically collect VOCs during an hour and then the compounds are flash evaporated into the GC for analysis. Chromatographic data for more than 65 VOCs are stored in analysis report text files. A program has been developed to read the amount of each component in the measurements such that a data set is generated that includes the concentrations of each VOC for each hourly sample. A subset of the data is selected that corresponds to the period of the positive ozone transient and these data are used in the data mining (DM) process. Based on a chemical mass balance (CMB) analysis, a linear model was established between the subset of the VOCs data and the positive ozone transition. Non-negative least squares (NNLS) was used to calculate the regression coefficient of the VOCs that have the most significant positive relationship to the positive ozone transition. The results show that more attention might be paid to several unknown VOCs, which have significant relationships to the transient high ozone formation. 相似文献
16.
17.
18.
阶跃升温分解法对非负载型镍催化甲烷分解活性的影响 总被引:1,自引:0,他引:1
以乙醇为洗涤溶剂采用沉淀法制备了非负载型 Ni 催化剂, 考察了预处理过程对催化剂上 CH4 分解活性的影响. X 射线衍射及 CH4 程序升温表面反应结果表明, 降低还原温度可减小 Ni 粒子尺寸, 从而提高催化剂活性. 同时, 采用 CH4 多温度逐步分解 (多点阶跃升温分解) 法可形成较稳定的 Ni 粒子, 有效提高催化剂的活性及稳定性, 500 oC 下 CH4 初始转化率可达 8.40%, 反应 120 min 时升至 11.20%; 而在 350 和 500 oC 两点阶跃升温分解的 CH4 最高转化率只有 1.61%. 相似文献
19.
在食品中和生物材料的微量元素检测中,应用新型高压湿法消解前处理方法,快速、高效地消解各类样品。综合各种因素,对普通食品、生物样品,最佳消解条件为120℃时,3h,样品质量(g)/浓HNO3量(mL)/H2O2(mL)为1:3:1。由回收率试验可知,铅的回收率在95.8%-104.5%,其准确度完全能够满足食品或生物材料中微量金融分析的要求。由于高压湿法消解比干法灰化方法具有快速、高效、准确度高,且消解温度低(低于150℃),无污染,节省能源等优点,将该法引入食品和生物材料检测工作,可大大提高工作效率,而且可以提高检测准确度。 相似文献