首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymeric forms of ionic liquids have many potential applications because of their high thermal stability and ionic nature. Two ionic liquid monomers, 1‐(4‐vinylbenzyl)‐3‐butyl imidazolium tetrafluoroborate (VBIT) and 1‐(4‐vinylbenzyl)‐3‐ butyl imidazolium hexafluorophosphate (VBIH), were synthesized through the quaternization of N‐butylimidazole with 4‐vinylbenzylchloride and a subsequent anion‐ exchange reaction with sodium tetrafluoroborate or potassium hexafluorophosphate. Copper‐mediated atom transfer radical polymerization was used to polymerize VBIT and VBIH. The effects of various initiator/catalyst systems, monomer concentrations, solvent polarities, and reaction temperatures on the polymerization were examined. The polymerization was well controlled and exhibited living characteristics when CuBr/1,1,4,7,10,10‐hexamethyltriethylenetetramine or CuBr/2,2′‐bipyridine was used as the catalyst and ethyl 2‐bromoisobutyrate was used as the initiator. Characterizations by thermogravimetric analysis, differential scanning calorimetry, and X‐ray diffraction showed that the resulting VBIT polymer, poly[1‐(4‐vinylbenzyl)‐3‐butyl imidazolium tetrafluoroborate] (PVBIT), was amorphous and had excellent thermal stability, with a glass‐transition temperature of 84 °C. The polymerized ionic liquids could absorb CO2 as ionic liquids: PVBIT absorbed 0.30% (w/w) CO2 at room temperature and 0.78 atm. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1432–1443, 2005  相似文献   

2.
The atom transfer radical polymerization (ATRP) of n-octyl acrylate (OA) was successfully carried out using ethyl-2-bromobutyrate as an initiator, and CuBr/2,2-bipyridine (bpy) as a catalyst under microwave irradiation (MI) at 76.8 °C. The polymerization of n-octyl acrylate under MI showed linear first-order rate plots, a linear increase of the number-average molecular weight Mn with conversion, and low polydispersities, 1.1<Mw/Mn<1.4, where Mw is weight-average molecular weight. The ATRP of n-octyl acrylate is well controlled. Under the same experimental conditions, the apparent rate constant, kpapp, under MI is larger apparently than that under conventional heating. In addition, the effects of concentration of catalyst and other factors on polymerization are reported.  相似文献   

3.
The atom transfer radical polymerization (ATRP) of styrene in water/toluene mixtures was studied. A linear dependence of the molecular weight on conversion was observed, but the initiation efficiency decreased when the catalyst concentration increased. The variation of the amount of water in the system affected the control of the ATRP, indicating that the presence of the aqueous phase influenced the concentration of copper halides in the organic phase. The partitioning of copper halides resulted in almost complete migration of CuII into the aqueous phase, which assisted with catalyst removal after polymerization. For example, the amount of residual copper in the organic phase determined by inductively coupled plasma was less than 1 ppm when the polymerization mixture was exposed to air for 30 min. The ATRP of styrene in water/toluene mixtures occurred with the preservation of Br at the polymer chain end, as confirmed by successful block copolymerization. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3153–3160, 2002  相似文献   

4.
Fe3O4/SiO2/poly (N-isopropylacrylamide-co-N,N-dimethylaminoethyl methacrylate) [P(NIPAM-co-DMA)] multiresponsive composite microspheres with core–shell structure were synthesized by template precipitation polymerization. First, the magnetite nanoparticles were coated with silica and then modified with 3-(trimethoxysilyl)-propyl methacrylate (MPS). Subsequently, the Fe3O4/SiO2 particles grafted with MPS were used to seed the precipitation copolymerization of NIPAM and DMA. The composite microspheres with core–shell structure were superparamagnetic, pH-sensitive, and thermoresponsive. The swelling ratio (D25 °C, pH = 3/D50 °C, pH = 9)3 coupling of pH and temperature increased up to 21.2, which was much higher than that without comonomer DMA.  相似文献   

5.
A novel functional monomer incorporating quinoline derivative moiety as the side group, 2-[4-(2,7,7-trimethyl-3-ethoxycarbonyl-5-oxo-1,4,5,6,7,8-hexhydricquinoline)phenoxyl] ethylmethacrylate (HQPEMA), was synthesized and polymerized utilizing atom transfer radical polymerization (ATRP) technique. 2-(4-Chloromethylphenyl)benzoxazole (CMPB) and CuCl/PMDETA were used as the initiator and catalyst, respectively. GPC, 1H NMR and fluorescent emission spectroscopy were conducted for characterization of polymers. The linear increase of number average molecular weight (Mn) versus conversion and the relatively narrow molecular weight distribution (Mw/Mn) of the obtained polymers confirmed that ATRP of HQPEMA was carried out successfully. In addition, the fluorescence “structural self-quenching effect” was observed in the DMF solution of the monomer HQPEMA, which bearing both electron-donating chromophore group and electron-accepting CC bond. We also found that the fluorescence properties of the newly obtained polymers containing quinoline chromophore depended on both the monomer concentration in solution and the polarity of solvents. The emission of the polymer film showed that the emission peak maxima of the polymer film shifted 50 nm towards high wavelength with respect to the polymer in DMF solution due to the intermolecular or intramolecular interactions of the polymer chains.  相似文献   

6.
Homopolymerization of methyl acrylate (MA) and methyl methacrylate (MMA) by atom transfer radical polymerization (ATRP) were carried out at 90 °C using methyl-2-bromopropionate (MBP) as initiator, copper halide (CuX, X=Cl, Br) as catalyst, 2,2-bipyridine (bpy) or N,N,N,N,N-pentamethyldiethylenetriamine (PMDETA) as ligand in 1-butanol (less polar and containing OH) and acetonitrile (more polar) solvents. It was found that with CuCl/bpy catalyst ATRP of MA and MMA in 1-butanol proceeded faster than that in acetonitrile. The rate of ATRP of MA and MMA in acetonitrile and 1-butanol was comparable when CuCl/PMDETA used as catalyst system. The number-average molecular weights increased with conversion and polydispersities were low . The ATRP of MA and MMA with vinyl acetate telomer having trichloromethyl end group (PVAc-CCl3) were also used to synthesize new block copolymers. The structures and molecular weight of synthesized PVAc-b-PMA and PVAc-b-PMMA were characterized by 1H NMR, FTIR spectroscopy and gel permeation chromatography (GPC) and shown that the block copolymers were novel.  相似文献   

7.
Pristine multi-walled carbon nanotubes (MWNTs) were incorporated into poly(vinylidene fluoride) (PVDF), poly(methyl methacrylate) (PMMA), and PVDF/PMMA blends to achieve binary and ternary nanocomposites. MWNTs were more compatible with the PVDF matrix than with the PMMA-containing matrices. MWNT addition did not alter the development of α-form PVDF crystals in the binary/ternary composites. Nucleation and overall isothermal crystallization of PVDF were enhanced by the presence of MWNTs, and enhancements were optimal in the PVDF/MWNT binary composites. Avrami analysis revealed that addition of MWNTs led to more extensive athermal-type nucleation of PVDF, and that PMMA slightly decreased the crystal growth dimension of PVDF. The equilibrium melting temperature (Tm°) of PVDF increased in the binary composites but remained nearly constant in the ternary system. Thermal stability was enhanced in the binary/ternary composites, and enhancements were more evident in the air environment than in nitrogen. Rheological property measurements revealed that the intensely entangled chains of high-molecular weight PVDF dominated the rheological response of PVDF-included samples in the melt state. A (pseudo)network structure was developed in each of the PVDF-included samples as well as in the 1 phr MWNT-added PMMA/MWNT composite. The storage moduli of the PVDF, PMMA, and PVDF/PMMA:1/1 blend increased to 37%, 22% and 34%, respectively, at 40 °C after addition of 1 phr MWNT.  相似文献   

8.
In the present work is reported the use of the biopolymer chitosan as template for the preparation of magnetite and magnetite/silver core/shell nanoparticles systems, following a two step procedure of magnetite nanoparticles in situ precipitation and subsequent silver ions reduction. The crystalline and morphological characteristics of both magnetite and magnetite/silver core/shell nanoparticles systems were analyzed by high resolution transmission electron microscopy (HRTEM) and nanobeam diffraction patterns (NBD). The results of these studies corroborate the core/shell morphology and the crystalline structure of the magnetite core and the silver shell. Moreover, magnetization temperature dependent, M(T), measurements show an unusual diluted magnetic behavior attributed to the dilution of the magnetic ordering in the magnetite and magnetite/silver core/shell nanoparticles systems.  相似文献   

9.
Covalently bonded layered silicated/polystyrene nanocomposites were synthesized via atom transfer radical polymerization in the presence of initiator‐modified layered silicate. The resulting nanocomposites had an intercalated and partially exfoliated structure, as confirmed by X‐ray diffraction and transmission electron microscopy. The thermal properties of the nanocomposites improved substantially over those of neat polystyrene. In particular, a maximum increase of 35.5 °C in the degradation temperature was displayed by these nanocomposites. Additionally, the surface elastic modulus and hardness of these nanocomposites were more than double those of pure polystyrene. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 534–542, 2005  相似文献   

10.
Fluoroalkyl end-capped vinylphosphonic acid cooligomers-encapsulated magnetite nanocomposites were prepared by the magnetization of aqueous ferric and ferrous ions in the presence of the corresponding fluorinated cooligomers and magnetic nanoparticles under alkaline conditions. These fluorinated cooligomers magnetic composites are nanometer size-controlled very fine particles and have a good dispersibility and stability in water and traditional organic solvents. These fluorinated nanocomposites were also applied to the surface modification of poly(methyl methacrylate) to exhibit a good oleophobicity imparted by fluorine on their surface. Fluoroalkyl end-capped 2-methacryloyloxyethanesulfonic acid oligomer-encapsulated magnetite nanocomposites and fluoroalkyl end-capped 2-acrylamide-2-methylpropanesulfonic acid oligomer-encapsulated magnetite nanocomposites were prepared in good isolated yields by the magnetization of iron chlorides in the presence of the corresponding oligomers and magnetic nanoparticles under similar conditions. Colloidal stability of these fluorinated nanocomposites thus obtained in water was demonstrated to become extremely higher than that of fluorinated vinylphosphonic acid cooligomers/magnetic nanocomposites.  相似文献   

11.
Atom transfer radical copolymerization of Styrene (St) and N‐cyclohexylmaleimide (NCMI) with the CuBr/bipyridine catalyst in anisole, initiated by 1‐phenylethyl bromide (1‐PEBr) or tetra‐(bromomethyl)benzene (TBMB), afforded well‐defined copolymers with predetermined molecular weights and low polydispersities, Mw/Mn < 1.5. The influences of several factors, such as temperature, solvent, and monomer ratio, on the copolymerization with the CuBr/bpy catalyst system were subsequently investigated. The apparent enthalpy of activation for the overall copolymerization was measured to be 28.2 kJ/mol. The monomer reactivity ratios were evaluated to be rNCMI = 0.046 and rSt = 0.127. Using TBMB as the initiator produced four‐armed star copolymer. The copolymerization of styrene and NCMI with TBMB/CuBr/bpy in PhOCH3 at 110 °C was found to provide good control of molecular weights and polydispersities and the similar copolymerization in cyclohexanone displayed poor control. The glass transition temperature of the resultant copolymer increases with increasing fNCMI, which indicates that the heat resistance of the copolymer has been improved by increasing NCMI. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1203–1209, 2000  相似文献   

12.
A series of poly(butylene succinate)/silica (PBS/silica) nanocomposites were prepared by in situ polymerization. Solid-state 29Si NMR and FTIR analysis indicated that silanol-bonded carbonyl groups are established within PBS/silica nanocomposite materials. Rheological effects inherent to the silica filler were evaluated by melt rheological analysis as a function of shear force in the molten state. Despite high shear force, PBS/silica nanocomposites maintained a relatively high melt viscosity, attributable to a network structure resulting from covalent bonding between silica and the polymer chain. Nanocomposite material containing 3.5 wt% silica exhibited greatly improved mechanical properties. The tensile strength at break and elongation were ca. 38.6 MPa and 515%, while those of the parent PBS were 26.3 MPa and 96%, respectively. PBS/silica nanocomposites showed composition dependency on biodegradation ascribable to reduced crystallinity and preferential microbial attack.  相似文献   

13.
A series of silica nano-particles with different size were prepared by sol–gel technique, then surface modification by using cyclic carbonate functional organoalkoxysilane (CPS) was performed. Various amounts of carbonated silica particles directly added into carbonated soybean oil (CSBO) and carbonated polypropylene glycol (CPPG) resin mixture to prepare polyurethane–silica nanocomposite coating compositions by nonisocyanate route using an aliphatic diamine as a curing agent. Cupping, gloss, impact, and taber abrasion tests were performed on aluminum panels coated with those nano-composite formulations and tensile tests, thermogravimetric and SEM analyses were conducted on the free films prepared from the same coating formulations. An increase in abrasion resistance of CSBO-CPPG resin combination with the addition of silica was observed. In addition, the maximum weight loss of CSBO-CPPG resin combination was shifted to higher temperatures with incorporation of silica nano-particles The positive effect of modified silica particles on thermal stability of CSBO-CPPG system could be explained in such a way that PPG chains are able to disperse particles in the medium throughout the interactions between ether linkages and silanol groups.  相似文献   

14.
Crosslinked poly(4‐vinylbenzyl chloride) (PVBC) nanospheres of about 160 nm were first synthesized by emulsion copolymerization of 4‐vinylbenzyl chloride (VBC) in the presence of a crosslinking agent, p‐divinylbenzene. Subsequent modification of the nanosphere surfaces via surface‐initiated atom transfer radical polymerization of 4‐vinylpyridine, using the VBC units of PVBC on the nanosphere surface as the macroinitiators, produced a well‐defined and covalently tethered poly(4‐vinylpyridine) (P4VP) shells of 24–27 nm in thickness. Activation of the P4VP shells in a PdCl2 solution, followed by reactions with CO or H2S gas, gave rise to the corresponding P4VP composite shells containing densely dispersed palladium metal or palladium sulfide nanoparticles. The chemical composition of the nanosphere surfaces at various stages of surface modification was characterized by X‐ray photoelectron spectroscopy. Field emission scanning electron microscopy and transmission electron microscopy were used to characterize the morphology of the organic/inorganic hybrid nanospheres coated with palladium/P4VP shells. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2119–2131, 2008  相似文献   

15.
Understanding the influence of salt/counterion on atom transfer radical polymerization (ATRP) is important to optimize the conditions for ATRP of ionic monomers, such as ionic liquid monomer. This article reports the results of a systematical investigation of the variables associated with ATRP in the presence of different types and amounts of salts, solvents, ligands, and monomers. A series of control ATRP experiments were conducted under various polymerization conditions. The kinetics of the polymerizations, the molecular weight, and molecular weight distribution of the formed polymers were studied by nuclear magnetic resonance and gel permeation chromatography. The results indicated that all of the studied variables influenced the ATRP process to different degrees. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2175–2184  相似文献   

16.
2-Methoxy ethyl acrylate (MEA), a functional monomer was homopolymerized using atom transfer radical polymerization (ATRP) technique with methyl 2-bromopropionate (MBP) as initiator and CuBr/N,N,N′,N′,N″-pentamethyldiethylenetriamine (PMDETA) as catalyst system; polymerization was conducted in bulk at 60 °C and livingness was established by chain extension reaction. The kinetics as well as molecular weight distribution data indicated towards the controlled nature of polymerization. The initiator efficiency and the effect of initiator concentration on the rate of polymerization were investigated. The polymerization remained well-controlled even at low catalyst concentration of 10% relative to initiator. The influence of different solvents, viz. ethylene carbonate and toluene on the polymerization was investigated. End-group analysis for the determination of high degree of functionality of PMEA was determined with the help of 13C{1H} NMR spectra. Chain extension experiment was conducted with PMEA macroinitiator for ATRP of acrylonitrile (AN) in ethylene carbonate at 70 °C using CuCl/bpy as catalyst system. The composition of individual blocks in PMEA-b-PAN copolymers was determined using 1H NMR spectra.  相似文献   

17.
A non‐olefinic monomer, methyl 1‐bicyclobutanecarboxylate (MBC), was successfully polymerized by the controlled/“living” atom transfer radical polymerization (ATRP) technique, resulting in a well‐defined homopolymer, PMBC, with only cyclobutane ring units in the polymer chain. An AB block copolymer poly(methyl 1‐bicyclobutanecarboxylate)‐b‐polystyrene (PMBC‐b‐PS), having an all‐ring unit segment, was also synthesized with narrow polydispersity and designed number‐average molecular weight in addition to precise end groups. The 1H NMR spectra, glass‐transition temperature, and thermal stability of PMBC, PMBC‐b‐PS, and PS‐b‐PMBC were investigated. The experimental results showed that the cyclobutane rings in the two block polymers improved their thermal stability. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1929–1936, 2002  相似文献   

18.
Dendritic polyarylether 2‐bromoisobutyrates of different generations (Gn‐Br, n = 1–3) as macroinitiators for the atom transfer radical copolymerization of N‐hexylmaleimide and styrene in an ionic liquid, 1‐butyl‐3‐methylimidazolium hexafluorophosphate, were investigated. The copolymerization carried out in the ionic liquid with CuBr/pentamethyldiethylenetriamine as a catalyst at room temperature afforded polymers with well‐defined molecular weights and low polydispersities (1.18 < Mw/Mn < 1.36, where Mw is the weight‐average molecular weight and Mn is the number‐average molecular weight), and the resultant copolymers possessed an alternating structure over a wide range of monomer feeds (f1 = 0.3–0.8). Meanwhile, the copolymerization was also conducted in anisole at 110 °C under similar conditions so that the effect of the reaction media on the polymerization could be evaluated. The monomer reactivity ratios showed that the tendency to form alternating copolymers for the two monomers was stronger in ionic liquids than in anisole. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3360–3366, 2002  相似文献   

19.
Poly(methyl methacrylate) (PMMA)/zinc oxide (ZnO) or carbazole polymer (PCEM)/ZnO nanocomposites, which are composed of high molecular weight PMMA or PCEM with narrow molecular weight distributions and ZnO nanoparticles, were successfully prepared by atom transfer radical polymerization (ATRP) initiated by 2-bromo-2-methylpropionyl (BMP) group (ZnBM) introduced onto the ZnO nanoparticle surfaces. Introduction of the BMP group onto the ZnO surfaces was achieved by esterification of OH group of the ZnO surfaces. The chemically attached OH group-having ZnO nanoparticles (ZnHM) were fabricated by sol-gel reaction from zinc acetate dihydrate, followed by treatment of the ZnO nanoparticles with 2-hydroxypropionic acid (HPA). The ZnHM nanoparticles showed one UV absorption and two emission bands: UV emission peak and broad visible emission band, while the ZnBM exhibited broad UV absorption and no emission spectra. The PMMA/ZnO nanocomposites displayed UV absorption and photoluminescent (PL) band with blue emission on the basis of the ZnHM nanoparticles, where the ZnO nanoparticles dispersed homogeneously in the PMMA matrix. The PCEM/ZnO nanocomposites depicted UV emission peak due to the carbazole unit in the UV range, but no visible emission. Thermal properties of the PMMA/ZnO nanocomposites were improved by dispersion of the ZnO nanoparticles into the PMMA, but the PCEM/ZnO nanocomposites showed no improvement of the thermal properties.  相似文献   

20.
Atom transfer radical polymerization conditions were optimized and standardized with different initiator and catalyst systems. Acrylonitrile/n‐butyl acrylate copolymers were synthesized with 2‐bromopropionitrile as the initiator and CuCl/Cu(0)/2,2′‐bipyridine as the catalyst system. Variations of the feed composition led to copolymers with different compositions. The number‐average molecular weight and the polydispersity index were determined by gel permeation chromatography. Quantitative 13C{1H} NMR was employed to determine the copolymer composition. The reactivity ratios calculated with a methodology based on the Mao–Huglin terminal model were rA = 1.30 and rB = 0.68 for acrylonitrile and n‐butyl acrylate, respectively. The reactivity ratios determined by the modified Kelen–Tudos method were rA = 1.29 ± 0.01 and rB = 0.67 ± 0.01. 13C{1H} NMR and distortionless enhancement by polarization transfer (DEPT‐45, 90, and 135) were used to distinguish methyl, methylene, methine, and quaternary carbon resonance signals. The overlapping and broad signals of the copolymers were assigned completely to various compositional and configurational sequences by the correlation of one‐dimensional (1H, 13C{1H}, and DEPT) and two‐dimensional (heteronuclear single quantum coherence, total correlation spectroscopy, and heteronuclear multibond correlation) NMR spectral data. The complete spectral assignments of carbonyl and nitrile carbons were performed with the help of heteronuclear multibond correlation spectra. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2810–2825, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号