首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 134 毫秒
1.
渐近波形估计(AWE)技术是分析目标宽带有效数值方法之一,但该方法需要多次存储高阶频率导数阻抗矩阵,内存消耗大.本文将快速偶极子法与AWE技术相结合,只需存储近区场阻抗矩阵及其高阶频率导数阻抗矩阵,并且大大加速了在迭代求解过程中的矩阵矢量乘积运算.与传统AWE技术相比,计算时间和内存消耗都得到了有效缩减,数值结果证明了本方法的有效性和精确性.  相似文献   

2.
基于预处理AWE技术的三维导体目标宽带RCS的快速计算   总被引:1,自引:0,他引:1  
摘要应用渐近波形估计技术计算目标宽带雷达散射截面,可有效提高计算效率.然而当目标为电大尺寸时,阻抗矩阵求逆运算将十分耗时,甚至无法计算.本文使用Krylov子空间迭代法取代矩阵逆来求解大型矩阵方程,并应用双门槛不完全LU分解预处理技术降低迭代求解所需的迭代次数.数值计算表明:本文结果与矩量法逐点求解结果吻合良好,且计算效率大大提高.  相似文献   

3.
AWE计算导体宽角度与宽频域RCS的效果分析   总被引:2,自引:0,他引:2  
将有理函数逼近方法运用到电磁散射领域中,基于矩量法并结合渐近波形估计技术对雷达散射截面进行加速计算。计算结果表明:渐近波形估计技术不但能准确地逼近矩量法的精确数值解,还可以较快的提高计算速度,但在加速计算导体宽角度与宽频域雷达散射截面时具有不同的效果。  相似文献   

4.
提出了一种快速求解目标宽带RCS的有效方法;方法将超宽带特征基函数法与最佳一致逼近相结合,首先求解出频率最高点处的特征基函数作为超宽带特征基函数,该基函数在每个切比雪夫节点能反复应用,大大节约每个切比雪夫节点处电流的求解时间,然后利用最佳一致逼近便可很快得到带宽内所有频点的电流分布信息,由此达到快速求解目标宽带RCS的目的;与传统超宽带特征基函数法相比,计算效率有了明显的提升,数值计算结果证实了该方法的精确性与有效性。  相似文献   

5.
为了提高电大尺寸复杂目标散射的计算效率,分析了加法定理和快速远场近似理论,并将其和多层快速多极子方法相结合,从而降低了计算复杂度.文中结合某型导弹的设计要求建模仿真,得出的结论可以反映实际的变化趋势,且该方法运算速度快,不受目标尺寸约束,完全可以满足工程分析的需要.  相似文献   

6.
文章将快速偶极子法(fast dipole method,FDM)结合再压缩自适应交叉近似(recompressed adaptive cross approximation,RACA)算法应用于导体目标雷达散射截面(radar cross section,RCS)的计算。快速偶极子法是在等效偶极子法的基础上,将远场组相互作用的偶极子之间的距离通过泰勒级数展开,实现矩阵向量积的快速计算。为了进一步加快近场组互阻抗元素的填充,采用RACA算法对阻抗矩阵进行进一步压缩。与传统FDM相比,计算时间和内存得到了有效缩减,数值结果证明了该方法的有效性和精确性。  相似文献   

7.
AWE应用于介质柱宽带RCS频率响应的快速计算   总被引:4,自引:1,他引:4  
基于渐近波形估计(AWE)技术和矩量法(MON)快速预测任意形状、非均匀介质柱体的雷达散射截面积(RCS)的宽带频率响应。首先采用矩量法求解介质柱的电场积分方程,得到介质柱体内在某一给定频率入射波照射下化电流,然后利用AWE技术将任一频率入射波照射下的极化 给定频率附近展开成Taylor级数,通过Pade逼将Taylor级数转化为有理函数,由此可获得介质柱在任一频率入射波照射下的极化电流,进而计算出RCS.计算结果表明AWE基本能逼近MOM精确计算的曲线,同时在计算速度上可加快近10倍。  相似文献   

8.
提出一种快速分析目标宽带雷达散射截面的方法,该方法将最小二乘拟合与特征基函数法相结合,通过计算选定的若干频率点的表面电流便可快速求解出整个频带内的表面电流.具体过程为利用特征基函数法求解选定频率点目标表面电流,进而利用最小二乘拟合实现表面电流和雷达散射截面的快速计算.数值计算结果表明:在不影响精度的前提下,该方法可大大提高计算效率、减少内存需求.  相似文献   

9.
根据弹道导弹在助推段的运动特性进行弹道仿真。采用准静态法结合矩量法仿真导弹在助推段的动态RCS,通过与导弹静态全角度单站RCS的计算结果对比得到每一采样时刻导弹姿态的变化,采用N点截图的方法获取动态RCS的均值方差联合分布提取弹道导弹在助推段的动态RCS特征,由此分析导弹在助推段的轨道特性,作为助推段导弹目标识别的依据。  相似文献   

10.
利用矩量法与电场积分方程(EFIE)相结合的方法,计算了平面波照射下,在目标谐振区内导电球、立方体以及平板的雷达散射截面,频率为300MHz时导弹的单双站RCS随方位角变化以及单站RCS随频率变化的情况.并根据数值结果分析了其电磁散射特性,这为利用谐振区的电磁散射特性探测与识别目标提供了理论依据.  相似文献   

11.
文章将有限元—边界积分法(FE-BI)与渐进波形估计技术(AWE)相结合应用到宽带电磁散射特性分析中.首先应用该理论计算导体方柱的宽带雷达散射界面(RCS)并与FE-BI逐点计算进行了比较,接着计算了导体表面覆盖不同密度、不同碰撞频率的等离子体的宽带RCS.计算结果表明,FE-BI结合AWE技术比有限元逐点计算省时,且...  相似文献   

12.
对整机雷达散射截面(RCS)进行快速预估分析.将军用飞行器散射总场分成两部分进行估算,对于机体表面单元散射场贡献采用电磁场的高频模拟计算方法即物理光学算法(PO),对于机体外延及面相交部所形成的棱边绕射场贡献采用改进的等效电磁流(IMEC)算法分析.为了验证该算法的有效性,完成了对两种飞行器目标模型RCS的模拟计算.模拟结果与暗室实测结果对比,表明该算法可以满足工程估算要求.  相似文献   

13.
复杂目标散射近区RCS特性预估的研究   总被引:3,自引:0,他引:3  
本文运用物理光学法(PO)和等效电磁流法(EMC)分析和计算了平板、多面体及某船体等复杂目标的近区单站RCS。作为例子,文中给出了一些目标的“近区”和“远区”单站RCS的比较。数值结果表明:目标“近区”和“远区”的单站RCS特性存在差异,而且这种差异随着目标形体复杂程度的增加而增加,其近区单站RCS特性亦变得复杂起来。该结果可为军用目标近区RCS的预估、雷达截面的减缩、隐身与反隐身、对抗与反对抗、目标别识、目标散射特性的缩比研究和远近场变换等相关的电磁工程技术实验和理论研究提供一定的理论依据。  相似文献   

14.
基于共享内存的高效OpenMP并行多层快速多极子算法   总被引:2,自引:1,他引:1  
提出并实现了一种基于共享内存并行平台的OpenMP并行多层快速多极子算法.结合OpenMP并行算法开发的要点和多层快速多极子算法数据分布的特性,对多层快速多极子的填充矩阵模块、矩阵向量相乘中的远相互作用部分进行了OpenMP并行化设计.在分析调度方式和循环次序对计算效率的影响的基础上,提出了一种高效的OpenMP并行多层快速多极子方案.数值实验表明,并行算法与串行精度一致,OpenMP并行算法具有较好的并行效率.  相似文献   

15.
基于导波模式理论,将进气道复杂终端分成若干个等效终端,提出了用模式叠加法计算飞机进气道的内部雷达散射面积,推导了部分典型等效终端的数学模型,通过计算结果与相关文献实验数据对比表明该方法基本可行。该方法的特点是极化散射矩阵和终端反射系数可分解后分别计算,便于叠加各种进气道构型和不断积累计算模型。  相似文献   

16.
根据等效原理、远场近似和边界条件,采用高频近似方法来分析雷达吸波材料涂层的矩形导电平板的电磁散射。当涂层是各向同性或单轴各异性的薄吸波材料时,应用这个简单而有效的方法,可以计算电大尺寸涂敷目标的雷达散射截面(RCS)。本文以涂敷导电平板和立方体为例,计算了雷达散射截面随入射角、涂层材料及涂层厚度的变化关系,结论还显示了目标涂敷雷达吸波材料后电磁散射的一些性质。  相似文献   

17.
给出了一种快速计算复杂涂敷目标散射场的方法。将复杂目标电磁散射分成面元和边缘散射,运用物理光学(PO)、阻抗边界条件(IBC)、等效电流(EM C)和物理绕射理论(PTD)对复杂目标雷达散射截面(RCS)进行计算,并将计算结果与文献结果及无涂敷纯金属目标的RCS进行对比分析,结果与文献及预期估计情况吻合较好,表明该方法不仅计算简单,而且结果也较为精确。  相似文献   

18.
角反射器表面粗糙度对单站RCS的影响   总被引:1,自引:0,他引:1  
研究了角反射器表面粗糙度对其雷达散射截面的影响.角反射器的粗糙表面由随机高斯面模拟,散射计算采用全波数值算法完成.计算结果与实测数据吻合,对实验数据进行了解释,验证了计算模型.通过多组计算结果得出结论,随着粗糙面均方根高度的增加和相关长度的减小,角反射器的非主散射区雷达横截面(RCS)均值提高,到达一定数值后角反射器的主散射区RCS也将受到显著影响.研究结论对角反射器用于RCS标定具有重要应用意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号