首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies are described on the metabolism and the toxicological detection of the amphetamine-derived designer drug 2,4,5-trimethoxyamphetamine (TMA-2) in rat urine using gas chromatographic/mass spectrometric (GC/MS) techniques. The identified metabolites indicated that TMA-2 was metabolized by oxidative deamination to the corresponding ketone followed by reduction to the corresponding alcohol, O-demethylation followed by oxidative deamination, and finally O,O-bis-demethylation. All metabolites carrying hydroxy groups were found to be partly excreted in urine as glucuronides and/or sulfates. The authors' systematic toxicological analysis (STA) procedure using full-scan GC/MS after acid hydrolysis, liquid-liquid extraction, and microwave-assisted acetylation allowed the detection, in rat urine, of an intake of TMA-2 that corresponds to a common drug users' dose. Assuming similar metabolism, the described STA procedure in human urine should be suitable as proof of an intake of TMA-2.  相似文献   

2.
The phenethylamine-derived designer drug 2,5-dimethoxy-4-methyl-beta-phenethylamine (2C-D) was found to be metabolized in rats by O-demethylation at position 2 or 5 followed by N-acetylation or by deamination with oxidation to the corresponding acids or reduction to the corresponding alcohol. Furthermore, 2C-D was hydroxylated at the methyl group or deaminated followed by reduction to the corresponding alcohol or by oxidation to the corresponding acid. Most of the metabolites were excreted in conjugated form. The authors' systematic toxicological analysis (STA) procedure using full-scan GC/MS allowed the detection of an intake of a dose of 2C-D in rat urine that corresponds to a common drug user's dose. Assuming similar metabolism, the described STA procedure should be suitable for proof of an intake of 2C-D in human urine.  相似文献   

3.
Studies are described on the metabolism and toxicological analysis of the phenethylamine-derived designer drug 2,5-dimethoxy-4-propylthio-beta-phenethylamine (2C-T-7) in rat urine using gas chromatography/mass spectrometry (GC/MS). The identified metabolites indicated that 2C-T-7 was metabolized by hydroxylation of the propyl side chain followed by N-acetylation and sulfoxidation and also by deamination followed by oxidation to the corresponding acid or by reduction to the corresponding alcohol. To a minor extent, 2C-T-7 was also metabolized by S-dealkylation followed by N-acetylation, S-methylation and sulfoxidation. The authors' systematic toxicological analysis (STA) procedure using full-scan GC/MS after acid hydrolysis, liquid-liquid extraction microwave-assisted acetylation allowed the detection of an intake of a dose of 2C-T-7 in rat urine that corresponds to a common drug users' dose. Assuming similar metabolism, the described STA procedure should be suitable for proof of an intake of 2C-T-7 in human urine.  相似文献   

4.
Studies are described on the metabolism and toxicological detection of the phencyclidine-derived designer drug N-(1-phenylcyclohexyl)-3-ethoxypropanamine (PCEPA) in rat urine using gas chromatographic/mass spectrometric techniques. The identified metabolites indicated that PCEPA was metabolized by N-dealkylation, O-deethylation partially followed by oxidation of the resulting alcohol to the corresponding carboxylic acid, hydroxylation of the cyclohexyl ring at different positions of PCEPA, N-dealkyl PCEPA, O-deethyl PCEPA, and of the corresponding carboxylic acids. Finally, aromatic hydroxylation of PCEPA, the corresponding carboxylic acids, and O-deethyl PCEPA, the latter partially followed by oxidation to the corresponding carboxylic acid and hydroxylation of the cyclohexyl ring could be observed. All metabolites were partially excreted in the conjugated form. The authors' systematic toxicological analysis (STA) procedure using full-scan GC/MS after acid hydrolysis, liquid-liquid extraction, and microwave-assisted acetylation allowed the detection in rat urine of an intake of a common drug users' dose of PCEPA. Assuming a similar metabolism in humans, the STA in human urine should be suitable as proof of intake of PCEPA.  相似文献   

5.
Studies are described on the metabolism and the toxicological analysis of the amphetamine-derived designer drug 2,5-dimethoxy-4-bromo-amphetamine (DOB) and its corresponding N-methyl analogue 2,5-dimethoxy-4-bromo-methamphetamine (MDOB) in rat urine using gas chromatographic/mass spectrometric techniques. The identified metabolites indicated that DOB was metabolized by O-demethylation followed by oxidative deamination to the corresponding ketone as well as deamination followed by reduction to the corresponding alcohol. Other metabolic pathways were O,O-bisdemethylation or hydroxylation of the side chain followed by O-demethylation and deamination to the corresponding alcohol. The expected oxo compound after deamination could not be detected. All metabolites carrying hydroxy groups were found to be partly excreted in the conjugated form. MDOB underwent O-demethylation, O,O-bisdemethylation, or hydroxylation of the side chain followed by O-demethylation. Additional N-demethylation to DOB occurred, including the above-mentioned metabolites. Again, all metabolites carrying hydroxy groups were found to be partly excreted in the conjugated form. The authors' systematic toxicological analysis (STA) procedure using full-scan GC/MS after acid hydrolysis, liquid-liquid extraction, and microwave-assisted acetylation allowed the detection of an intake of a dose of DOB and MDOB in rat urine that corresponds to a common drug user's dose. Assuming a similar metabolism, the described STA procedure in human urine should be suitable as proof of an intake of DOB and MDOB.  相似文献   

6.
Studies are described on the metabolism and the toxicological analysis of the phenethylamine-derived designer drug 2,5-dimethoxy-4-ethylthio-beta-phenethylamine (2C-T-2) in rat urine using gas chromatography/mass spectrometry (GC/MS) after enzymatic cleavage of conjugates, liquid-liquid extraction and derivatization. The structures of 14 metabolites were assigned tentatively by detailed interpretation of their mass spectra. Identification of these metabolites indicated that 2C-T-2 was metabolized by sulfoxidation followed by N-acetylation and either hydroxylation of the S-ethyl side chain or demethylation of one methoxy group, O-demethylation of the parent compound followed by N-acetylation and sulfoxidation, deamination followed by reduction to the corresponding alcohol followed by partial glucuronidation and/or sulfation or by oxidation to the corresponding acid followed either by partial glucuronidation or by degradation to the corresponding benzoic acid derivative followed by partial glucuronidation. Furthermore, 2C-T-2 was metabolized by N-acetylation of the parent compound followed either by O-demethylation and sulfoxidation or by S-dealkylation, S-methylation and sulfoxidation. The authors' systematic toxicological analysis (STA) procedure using full-scan GC/MS after acid hydrolysis, liquid-liquid extraction microwave-assisted acetylation allowed the detection of an intake of a dose of 2C-T-2 in rat urine, which corresponds to a common drug users' dose. Assuming similar metabolism, the described STA procedure should be suitable for proof of an intake of 2C-T-2 in human urine.  相似文献   

7.
Studies are described on the metabolism and the toxicological detection of the phencyclidine-derived designer drugs N-(1-phenylcyclohexyl)-2-ethoxyethanamine (PCEEA) and N-(1-phenylcyclohexyl)-2-methoxyethanamine (PCMEA) in rat urine using gas chromatographic/mass spectrometric (GC/MS) techniques. The identified metabolites indicated that PCEEA and PCMEA were transformed to the same metabolites by N-dealkylation and O-dealkylation partially followed by oxidation of the resulting alcohol to the respective carboxylic acid and hydroxylation of the cyclohexyl ring at different positions and combinations of those. Finally, aromatic hydroxylation of the O-dealkylated metabolites was partially followed by hydroxylation of the cyclohexyl ring at different positions. All metabolites were partially excreted in conjugated form. The authors' systematic toxicological analysis (STA) procedure using full-scan GC/MS after acid hydrolysis, liquid-liquid extraction and microwave-assisted acetylation allowed the detection of an intake of a common drug users' dose both of PCEEA and PCMEA in rat urine. Assuming similar metabolism in humans, the STA should be suitable for proof of an intake of PCEEA and PCMEA in human urine, although their differentiation is not possible due to common metabolites.  相似文献   

8.
Studies are described on the phase I and II metabolism and the toxicological analysis of the piperazine-derived designer drug 1-(3-trifluoromethylphenyl)piperazine (TFMPP) in rat urine using gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS). The identified metabolites indicated that TFMPP was extensively metabolized, mainly by hydroxylation of the aromatic ring and by degradation of the piperazine moiety to N-(3-trifluoromethylphenyl)ethylenediamine, N-(hydroxy-3-trifluoromethylphenyl)ethylenediamine, 3-trifluoromethylaniline, and hydroxy-3-trifluoromethylaniline. Phase II reactions included glucuronidation, sulfatation and acetylation of phase I metabolites. The authors' systematic toxicological analysis (STA) procedure using full-scan GC/MS after acid hydrolysis, liquid-liquid extraction and microwave-assisted acetylation allowed the detection of TFMPP and its above-mentioned metabolites in rat urine after single administration of a dose calculated from the doses commonly taken by drug users. Assuming similar metabolism, the described STA procedure should be suitable for proof of an intake of TFMPP in human urine.  相似文献   

9.
Studies are described on the metabolism and toxicological analysis of the piperazine-derived designer drug 1-(3,4-methylenedioxybenzyl)piperazine (MDBP) in rat urine using gas chromatography/mass spectrometry (GC/MS). The identified metabolites indicated that MDBP was metabolized by demethylenation and subsequent methylation to N-(4-hydroxy-3-methoxybenzyl)piperazine followed by partial glucuronidation or sulfation. Additionally, degradation of the piperazine moiety to N-(3,4-methylenedioxybenzyl)ethylenediamine and 3,4-methylenedioxybenzylamine and N-dealkylation to piperazine were observed. The authors' systematic toxicological analysis (STA) procedure using full-scan GC/MS after acid hydrolysis, liquid/liquid extraction and microwave-assisted acetylation allowed the detection of MDBP and its above-mentioned metabolites in rat urine after single administration of a dose calculated from the doses commonly taken by drug users. Assuming similar metabolism, the described STA procedure should be suitable for proof of an intake of MDBP by analysis of human urine.  相似文献   

10.
One of the many issues of designer drugs of abuse like synthetic cannabinoids (SCs) such as JWH‐018 is that details on their metabolism has yet to be fully elucidated and that multiple metabolites exist. The presence of isomeric compounds poses further challenges in their identification. Our group has previously shown the effectiveness of gas chromatography‐electron ionization‐tandem mass spectrometry (GC‐EI‐MS/MS) in the mass spectrometric differentiation of the positional isomers of the naphthoylindole‐type SC JWH‐081, and speculated that the same approach could be used for the metabolite isomers. Using JWH‐018 as a model SC, the aim of this study was to differentiate the positional isomers of its hydroxyindole metabolites by GC‐MS/MS. Standard compounds of JWH‐018 and its hydroxyindole metabolite positional isomers were first analyzed by GC‐EI‐MS in full scan mode, which was only able to differentiate the 4‐hydroxyindole isomer. Further GC‐MS/MS analysis was performed by selecting m/z 302 as the precursor ion. All four isomers produced characteristic product ions that enabled the differentiation between them. Using these ions, MRM analysis was performed on the urine of JWH‐018 administered mice and determined the hydroxyl positions to be at the 6‐position on the indole ring. GC‐EI‐MS/MS allowed for the regioisomeric differentiation of the hydroxyindole metabolite isomers of JWH‐018. Furthermore, analysis of the fragmentation patterns suggests that the present method has high potential to be extended to hydroxyindole metabolites of other naphthoylindole type SCs in identifying the position of the hydroxyl group on the indole ring. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Hyphenated mass spectrometric techniques, particularly gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS), are indispensable tools in clinical and forensic toxicology and in doping control owing to their high sensitivity and specificity. They are used for screening, library-assisted identification and quantification of drugs, poisons and their metabolites, prerequisites for competent expertise in these fields. In addition, they allow the study of metabolism of new drugs or poisons as a basis for developing screening procedures in biological matrices, most notably in urine, or toxicological risk assessment. Concepts and procedures using GC/MS and LC/MS techniques in the areas of analytical toxicology and the role of mass spectral libraries are presented and discussed in this feature article. Finally, perspectives of their future position are discussed.  相似文献   

12.
The aim of the present study was to identify the metabolites of the new designer drug α‐pyrrolidinovalerophenone (PVP) in rat urine using GC/MS techniques. Eleven metabolites of PVP could be identified suggesting the following metabolic steps: hydroxylation of the side chain followed by dehydrogenation to the corresponding ketone; hydroxylation of the 2″‐position of the pyrrolidine ring followed by dehydrogenation to the corresponding lactam or followed by ring opening to the respective aliphatic aldehyde and further oxidation to the respective carboxylic acid; degradation of the pyrrolidine ring to the corresponding primary amine; and hydroxylation of the phenyl ring, most probably in the 4′‐position. The authors' screening procedure for pyrrolidinophenones allowed the detection of PVP metabolites after application of a dose corresponding to a presumed user's dose. In addition, the involvement of nine different human cytochrome P450 (CYP) isoenzymes in the side chain hydroxylation of PVP was investigated and CYP 2B6, 2C19, 2D6, and 3A4 were found to catalyze this reaction. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Studies are described on the metabolism and the toxicological detection of the phencyclidine-derived designer drug N-(1-phenylcyclohexyl)-propanamine (PCPR) in rat urine using gas chromatographic-mass spectrometric techniques. The identified metabolites indicated that PCPR was metabolized by hydroxylation of the cyclohexyl ring at different positions, hydroxylation of the phenyl ring, N-dealkylation, and combinations of these steps. Parts of the metabolites were excreted in conjugated form. The authors' systematic toxicological analysis (STA) procedure using full-scan GC-MS after acid hydrolysis, liquid-liquid extraction and microwave-assisted acetylation allowed the detection of an intake of a common drug users' dose of PCPR in rat urine. Assuming similar metabolism in humans, the STA should be suitable for proof of an intake of PCPR in human urine.  相似文献   

14.
A novel and selective liquid chromatographic–mass spectrometric method (LC‐MS/MS) has been established and validated for simultaneous determination of subutinib and active metabolite in human urine. Urine samples were extracted by liquid–liquid extraction with ethyl acetate and separated on a Wondasil C18 (150 × 2.1 mm, 3.5 µm), with methanol–0.2% formic acid solution (73:27, v/v) as mobile phase at flow rate of 0.2 mL/min. The linear range was 0.5000–200.0 ng/mL for subutinib and active metabolite, with a lower limit of quantitation of 0.5000 ng/mL. Intra‐ and inter‐run precisions were all <11.8 and 14.3%, and the accuracies were all <4.5 and 5.4%, with the extraction recoveries 88.8–97.5 and 93.8–99.4% for the two analytes, respectively. The carryover values were all <15% for the two anayltes. The method was successfully applied to study urinary excretion of subutinib and active metabolite in human after oral administration of subutinib maleate capsules in fed and fasting states. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
The in vitro metabolism of CJ-11,972, (2-benzhydryl-1-aza-bicyclo[2.2.2]oct-3-yl)-(5-tert-butyl-2-methoxybenzyl)amine, an NK1 receptor antagonist, was studied in human liver microsomes and recombinant human CYP isoforms. Liquid chromatography/mass spectrometry (LC/MS) and tandem mass spectrometry (LC/MS/MS) coupled to radioactive detection were used to detect and identify the metabolites. CJ-11,972 was extensively metabolized in human liver microsomes and recombinant human CYP 3A4/3A5 isoforms. A total of fourteen metabolites were identified by a combination of various MS techniques. The major metabolic pathways were due to oxidation of the tert-butyl moiety to form an alcohol (M6) and/or O-demethylation of the anisole moiety. The alcohol metabolite M6 was further oxidized to the corresponding aldehyde (M7) and carboxylic acid (M4). Two unusual metabolites (M13, M17), formed by C-demethylation of the tert-butyl group, were identified as 2-{3-[(2-benzhydryl-1-aza-bicyclo[2.2.2]oct-3-ylamino)methyl]-4-methoxyphenyl}propan-2-ol and (2-benzhydryl-1-aza-bicyclo[2.2.2]oct-3-yl)-(5-isopropenyl-2-methoxybenzyl)amine. A plausible mechanism for C-demethylation may involve oxidation of M6 to form an aldehyde metabolite (M7), followed by cytochrome P450-mediated deformylation leaving an unstable carbon-centered radical, which would quickly form either the alcohol metabolite M13 and the olefin metabolite M17.  相似文献   

16.
A method using gas chromatography/mass spectrometry (GC/MS), liquid chromatography/mass spectrometry (LC/MS) and (1)H NMR with pattern recognition tools such as principle components analysis (PCA) was used to study the human urinary metabolic profiles after the intake of green tea. From the normalized peak areas obtained from GC/MS and LC/MS and peak heights from (1)H NMR, statistical analyses were used in the identification of potential biomarkers. Metabolic profiling by GC/MS provided a different set of quantitative signatures of metabolites that can be used to characterize the molecular changes in human urine samples. A comparison of normalized metabonomics data for selected metabolites in human urine samples in the presence of potential overlapping peaks after tea ingestion from LC/MS and (1)H NMR showed the reliability of the current approach and method of normalization. The close agreements of LC/MS with (1)H NMR data showed that the effects of ion suppression in LC/MS for early eluting metabolites were not significant. Concurrently, the specificity of detecting the stated metabolites by (1)H NMR and LC/MS was demonstrated. Our data showed that a number of metabolites involved in glucose metabolism, citric acid cycle and amino acid metabolism were affected immediately after the intake of green tea. The proposed approach provided a more comprehensive picture of the metabolic changes after intake of green tea in human urine. The multiple analytical approach together with pattern recognition tools is a useful platform to study metabolic profiles after ingestion of botanicals and medicinal plants.  相似文献   

17.
Studies are described on the metabolism and the toxicological analysis of the amphetamine-derived designer drug 4-chloro-2,5-dimethoxyamphetamine (DOC) in rat urine using gas chromatographic-mass spectrometric techniques. The metabolites identified indicated that DOC was metabolized by O-demethylation at position 2 or 5 of the phenyl ring partly followed by glucuronidation and/or sulfation. The authors’ systematic toxicological analysis procedure using full-scan gas chromatography-mass spectrometry after acid hydrolysis, liquid-liquid extraction and microwave-assisted acetylation allowed the detection of an intake of a dose of DOC in rat urine that corresponds to a common drug user’s dose. Assuming similar metabolism, the STA procedure described should be suitable as proof of an intake of DOC in human urine.  相似文献   

18.
Since the late 1990s, many derivatives of the α-pyrrolidinophenone (PPP) drug class appeared on the drugs of abuse market. The latest compound was described in 2009 to be a classic PPP carrying a methylenedioxy moiety remembering the classic entactogens (ecstasy). Besides Germany, 3,4-methylene-dioxypyrovalerone (MDPV) has appeared in many countries in Europe and Asia, indicating its worldwide importance for forensic and clinical toxicology. The aim of the presented work was to identify the phase I and II metabolites of MDPV and the human cytochrome-P450 (CYP) isoenzymes responsible for its main metabolic step(s). Finally, the detectability of MDPV in urine by the authors' systematic toxicological analysis (STA) should be studied. The urine samples were extracted after and without enzymatic cleavage of conjugates. The metabolites were separated and identified after work-up by GC-MS and liquid chromatography (LC)-high-resolution MS (LC-HR-MS). The studies revealed the following phase I main metabolic steps in rat and human: demethylenation followed by methylation, aromatic and side chain hydroxylation and oxidation of the pyrrolidine ring to the corresponding lactam as well as ring opening to the corresponding carboxylic acid. Using LC-HR-MS, most metabolite structures postulated according to GC-MS fragmentation could be confirmed and the phase II metabolites were identified. Finally, the formation of the initial metabolite demethylenyl-MDPV could be confirmed using incubation of human liver microsomes. Using recombinant human CYPs, CYP 2C19, CYP 2D6 and CYP 1A2 were found to catalyze this initial step. Finally, the STA allowed the detection of MDPV metabolites in the human urine samples.  相似文献   

19.
GC/MS和ESI/MS/MS同位素内标法检测甲基丙二酸血症   总被引:6,自引:0,他引:6  
以甲基丙二酸血症为对象,分别用GC/MS和ESI/MS/MS方法对该疾病进行了定性和定量检测.通过对样品前处理和分离条件的改善,对疾病的标识化合物之一甲基丙二酸进行了定量测定,其稳定性、精密度和回收率结果很好.同时比较了GC/MS和ESI/MS/MS两种方法的特点,发现两种方法的结合不仅可满足新生儿代谢疾病筛查的要求,同时还可对高危人群进行诊断.  相似文献   

20.
Studies of the pharmacology and toxicology of the popular insect repellant, N,N-diethyl-m-toluamide (DEET), have largely been done in animal models using radioactive tracing without the structural elucidation of its metabolites. This paper describes a high resolution gas chromatography/mass spectrometry (GC/MS) technique and reports the results of the preliminary characterization of the metabolites of DEET in the urine of a 30-year-old man who had been exposed to DEET contained in a commercial product. The metabolites were extracted and separated with an OV-101 glass capillary column, 30 m × 0.3 mm, and mass spectrometric elucidations were carried out with both Electron Impact (EI) and Chemical Ionization-Methane (MCI) modes. Oxidation of the benzylic moiety and hydroxylation of the sidechain of DEET molecules appeared to be the predominate routes of metabolism in man. The artifacts were also proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号