首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the efficiency droop of an InGaN light-emitting diode (LED) is reduced slgnlncanUy oy using a p-AlGaN/GaN superlattice last quantum barrier. The reduction in efficiency droop is mainly caused by the decrease of electron current leakage and the increase of hole injection efficiency, which is revealed by investigating the light currents, internal quantum efficiencies, energy band diagrams, carrier concentrations, carrier current densities, and radiative recombination efficiencies of three LED structures with the advanced physical model of semiconductor device (APSYS).  相似文献   

2.
<正>In this study,the characteristics of nitride-based light-emitting diodes with different last barrier structures are analysed numerically.The energy band diagrams,electrostatic field near the last quantum barrier,carrier concentration in the quantum well,internal quantum efficiency,and light output power are systematically investigated.The simulation results show that the efficiency droop is markedly improved and the output power is greatly enhanced when the conventional GaN last barrier is replaced by an AlGaN barrier with Al composition graded linearly from 0 to 15% in the growth direction.These improvements are attributed to enhanced efficiencies of electron confinement and hole injection caused by the lower polarization effect at the last-barrier/electron blocking layer interface when the graded Al composition last barrier is used.  相似文献   

3.
The efficiency enhancement of an InGaN light-emitting diode (LED) with an A1GaN/InGaN superlattice (SL) electron-blocking layer (EBL) is studied numerically, which involves the light-current performance curve, internal quan- tum efficiency electrostatic field band wavefunction, energy band diagram carrier concentration, electron current density, and radiative recombination rate. The simulation results indicate that the LED with an A1GaN/InGaN SL EBL has better optical performance than the LED with a conventional rectangular A1GaN EBL or a normal A1GaN/GaN SL EBL because of the appropriately modified energy band diagram, which is favorable ibr the injection of holes and confinement of elec- trons. Additionally, the efficiency droop of the LED with an AIGaN/InGaN SL EBL is markedly improved by reducing the polarization field in the active region.  相似文献   

4.
The efficiency enhancement of an InGaN light-emitting diode(LED) with an AlGaN/InGaN superlattice(SL)electron-blocking layer(EBL) is studied numerically,which involves the light-current performance curve,internal quantum efficiency electrostatic field band wavefunction,energy band diagram carrier concentration,electron current density,and radiative recombination rate.The simulation results indicate that the LED with an AlGaN/InGaN SL EBL has better optical performance than the LED with a conventional rectangular AlGaN EBL or a normal AlGaN/GaN SL EBL because of the appropriately modified energy band diagram,which is favorable for the injection of holes and confinement of electrons.Additionally,the efficiency droop of the LED with an AlGaN/InGaN SL EBL is markedly improved by reducing the polarization field in the active region.  相似文献   

5.
The advantages of a GaN–AlGaN–InGaN last quantum barrier(LQB) in an InGaN-based blue light-emitting diode are analyzed via numerical simulation. We found an improved light output power, lower current leakage, higher recombination rate, and less efficiency droop compared with conventional GaN LQBs. These improvements in the electrical and optical characteristics are attributed mainly to the specially designed GaN–AlGaN–InGaN LQB, which enhances electron confinement and improves hole injection efficiency.  相似文献   

6.
The advantages of a GaN-AlGaN-InGaN last quantum barrier (LQB) in an InGaN-based blue light-emitting diode are analyzed via numerical simulation. We found an improved light output power, lower current leakage, higher recombi- nation rate, and less efficiency droop compared with conventional GaN LQBs. These improvements in the electrical and optical characteristics are attributed mainly to the specially designed GaN-AlGaN-InGaN LQB, which enhances electron confinement and improves hole injection efficiency.  相似文献   

7.
GaN/InGaN superlattice barriers are used in InGaN-based light-emitting diodes (LEDs). The electrostatic field in the quantum wells, electron hole wavefunction overlap, carrier concentration, spontaneous emission spectrum, light-current performance curve, and internal quantum efficiency are numerically investigated using the APSYS simulation software. It is found that the structure with GaN/InGaN superlattice barriers shows improved light output power, and lower current leakage and efficiency droop. According to our numerical simulation and analysis, these improvements in the electrical and optical characteristics are mainly attributed to the alleviation of the electrostatic field in the active region.  相似文献   

8.
InGaN/AlInGaN superlattice(SL) is designed as the electron blocking layer(EBL) of an InGaN/GaN-based lightemitting diode(LED). The energy band structure, polarization field at the last-GaN-barrier/EBL interface, carrier concentration, radiative recombination rate, electron leakage, internal quantum efficiency(IQE), current–voltage(I–V) performance curve, light output–current(L–I) characteristic, and spontaneous emission spectrum are systematically numerically investigated using APSYS simulation software. It is found that the fabricated LED with InGaN/AlInGaN SL EBL exhibits higher light output power, low forward voltage, and low current leakage compared with those of its counterparts.Meanwhile, the efficiency droop can be effectively mitigated. These improvements are mainly attributed to the higher hole injection efficiency and better electron confinement when InGaN/AlInGaN SL EBL is used.  相似文献   

9.
InGaN/AIlnGaN superlattice (SL) is designed as the electron blocking layer (EBL) of an InGaN/GaN-based light- emitting diode (LED). The energy band structure, polarization field at the last-GaN-barrier/EBL interface, carrier concen- tration, radiative recombination rate, electron leakage, internal quantum efficiency (IQE), current-voltage (l-V) perfor- mance curve, light output-current (L-l) characteristic, and spontaneous emission spectrum are systematically numerically investigated using APSYS simulation software. It is found that the fabricated LED with InGaN/AIInGaN SL EBL exhibits higher light output power, low forward voltage, and low current leakage compared with those of its counterparts. Meanwhile, the efficiency droop can be effectively mitigated. These improvements are mainly attributed to the higher hole injection efficiency and better electron confinement when InGaN/AIlnGaN SL EBL is used.  相似文献   

10.
时强  李路平  张勇辉  张紫辉  毕文刚 《物理学报》2017,66(15):158501-158501
GaN/In_xGa_(1-x)N型最后一个量子势垒结构能有效提高发光二极管(LED)器件内量子效率,缓解LED效率随输入电流增大而衰减的问题.本文综述了该结构及其结构变化——In组分梯度递增以及渐变、GaN/In_xGa_(1-x)N界面极化率改变等对改善LED器件性能的影响及优势,归纳总结了不同结构的GaN/In_xGa_(1-x)N型最后一个量子垒的工作机理,阐明极化反转是该结构提高LED性能的根本原因.在综述该结构发展的基础之上,通过APSYS仿真计算,进一步探索和深入分析了该结构中In_xGa_(1-x)N层的In组分及其厚度变化对LED内量子效率的影响.结果表明:In组分的增加有助于在GaN/In_xGa_(1-x)N界面产生更多的极化负电荷,增加GaN以及电子阻挡层处导带势垒高度,减少电子泄漏,从而提高LED的内量子效率;但GaN/In_xGa_(1-x)N型最后一个量子势垒中In_xGa_(1-x)N及GaN层厚度的变化由于会同时引起势垒高度和隧穿效应的改变,因而In_xGa_(1-x)N和GaN层的厚度存在一个最佳比值以实现最大化的减小漏电子,提高内量子效率.  相似文献   

11.
12.
毛清华  江风益  程海英  郑畅达 《物理学报》2010,59(11):8078-8082
在Si(111)衬底上利用MOCVD方法生长了具有不同Al组分p-AlGaN电子阻挡层的绿光InGaN/GaN LED结构,并对其光电性能进行了研究.结果表明,不同Al组分样品的量子效率随电流密度的变化规律呈现多样性.在很低电流密度范围,LED量子效率随Al组分升高而下降;在较高电流密度范围,LED量子效率随Al组分升高而升高,即此时缓解了量子效率随电流密度增大而衰退的速率(即droop效应);但随着电流密度的进一步升高,反而加快了量子效率衰退的速率.这些现象解释为不同Al组分的p-AlGaN对空穴和电子 关键词: 氮化镓 p-AlGaN 绿光LED 量子效率  相似文献   

13.
The optical and physical properties of an InGaN light-emitting diode (LED) with a specific design of a staggered AlGaN electron-blocking layer (EBL) are investigated numerically in detail. The electrostatic field distribution, energy band, carrier concentration, electroluminescence (EL) intensity, internal quantum efficiency (IQE), and the output power are simulated. The results reveal that this specific design has a remarkable improvement in optical performance compared with the design of a conventional LED. The lower electron leakage current, higher hole injection efficiency, and consequently mitigated efficiency droop are achieved. The significant decrease of electrostatic field at the interface between the last barrier and the EBL of the LED could be one of the main reasons for these improvements.  相似文献   

14.
Strain-compensated InGaN quantum well (QW) active region employing tensile AlGaN barrier is analyzed. Its spectral stability and efficiency droop for dual-blue light-emitting diode (LED) are improved compared with those of the conventional InGaN/GaN QW dual-blue LED based on stacking structure of two In0.18Ga0.82N/GaN QWs and two In0.12Ga0.88N/GaN QWs on the same sapphire substrate. It is found that the optimal performance is achieved when the Al composition of strain-compensated AlGaN layer is 0.12 in blue QW and 0.21 in blue-violet QW. The improvement performance can be attributed to the strain-compensated InGaN-AlGaN/GaN QW that can provide a better carrier confinement and effectively reduce leakage current.  相似文献   

15.
陈峻  范广涵  张运炎 《中国物理 B》2013,22(1):18504-018504
The optical and physical properties of InGaN light-emitting diode (LED) with a specific design of staggered AlGaN electron-blocking layer (EBL) are investigated numerically in detail. The electrostatic field distribution, energy band, carrier concentration, electroluminescence (EL) intensity, internal quantum efficiency (IQE), and the output power are simulated. The results reveal that this specific design has a remarkable improvement of optical performance compared with the design of conventional LED. The lower electron leakage current, higher hole injection efficiency, and consequently mitigated efficiency droop are achieved. The significant decrease of electrostatic field at the interface between the last barrier and the EBL of LED could be one of the main reasons for these improvements.  相似文献   

16.
The characteristics of a blue light-emitting diode (LED) with an AlInN/GaN superlattice (SL) electron-blocking layer (EBL) are analyzed numerically. The carrier concentrations in the quantum wells, energy band diagrams, electrostatic fields, and internal quantum efficiency are investigated. The results suggest that the LED with an AlInN/GaN SL EBL has better hole injection efficiency, lower electron leakage, and smaller electrostatic fields in the active region than the LED with a conventional rectangular AlGaN EBL or a AlGaN/ GaN SL EBL. The results also indicate that the efficiency droop is markedly improved when an AlInN/GaN SL EBL is used.  相似文献   

17.
18.
The advantages of InGaN based light-emitting diodes with InGaN/GaN multilayer barriers are studied.It is found that the structure with InGaN/GaN multilayer barriers shows improved light output power,lower current leakage,and less efficiency droop over its conventional InGaN/GaN counterparts.Based on the numerical simulation and analysis,these improvements on the electrical and the optical characteristics are mainly attributed to the alleviation of the electrostatic field in the quantum wells(QWs) when the InGaN/GaN multilayer barriers are used.  相似文献   

19.
通过测量光电流,直接观察了InGaN/GaN量子阱中载流子的泄漏程度随温度升高的变化关系。当LED温度从300K升高到360K时,在相同的光照强度下,LED的光电流增大,说明在温度上升之后,载流子从量子阱中逃逸的数目更多,即载流子泄漏比例增大。同时,光电流的增大在激发密度较低的时候更为明显,而且光电流随温度的增加幅度与激发光子的能量有关。用量子阱-量子点复合模型能很好地解释所观察到的实验现象。实验结果直接证明,随着温度的升高,InGaN/GaN量子阱中的载流子泄漏将显著增加,而且在低激发密度下这一效应更为明显。温度升高导致的载流子泄漏增多是InGaN多量子阱LED发光效率随温度升高而降低的重要原因。  相似文献   

20.
陈钊  杨薇  刘磊  万成昊  李磊  贺永发  刘宁炀  王磊  李丁  陈伟华  胡晓东 《中国物理 B》2012,21(10):108505-108505
The InGaN/GaN blue light emitting diode(LED) is numerically investigated using a triangular-shaped quantum well model,which involves analysis on its energy band,carrier concentration,overlap of electron and hole wave functions,radiative recombination rate,and internal quantum efficiency.The simulation results reveal that the InGaN/GaN blue light emitting diode with triangular quantum wells exhibits a higher radiative recombination rate than the conventional light emitting diode with rectangular quantum wells due to the enhanced overlap of electron and hole wave functions(above 90%) under the polarization field.Consequently,the efficiency droop is only 18% in the light emitting diode with triangular-shaped quantum wells,which is three times lower than that in a conventional LED.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号