首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis, photophysical and photochemical properties of the 4-({3,4,5-tris-[2-(2-ethoxyethoxy)ethyloxy]benzyl}oxy) and 4-({3,4,5-tris-[2-(2-ethoxyethoxy)ethyloxy]benzyl}thio) zinc(ii) phthalocyanines are reported for the first time. The new compounds have been characterized by elemental analysis, IR, (1)H and (13)C NMR spectroscopy, electronic spectroscopy and mass spectra. General trends are described for photodegradation, singlet oxygen, fluorescence and triplet excited state quantum yields, and triplet state and fluorescence lifetimes of these compounds in dimethylsulfoxide (DMSO). The fluorescence of the complexes was quenched by benzoquinone (BQ). The effects of the substitution on the photophysical and photochemical parameters of the zinc(II) phthalocyanines (6, 7 and 8) are also reported. Photophysical and photochemical properties of phthalocyanine complexes are very useful for PDT applications. The substituted Zn(II) phthalocyanines showed high triplet and singlet oxygen quantum yields. High singlet oxygen quantum yields are very important for Type II mechanism. Thus, these complexes show potential as Type II photosensitizers.  相似文献   

2.
The phosphorescence properties, especially the dynamic behavior of metal free and metal complexed porphyrins, have been studied in phosphate buffered saline (PBS) containing 0-3% human serum albumin (HSA). 6,7-Bisaspartyl-2,4-bis (1-hexyloxyethyl)-deutero- porphyrin (DP) and its gallium(III), zinc(II), and indium(III) complexes are used as photosensitizers. Upon irradiation, a solution of porphyrins containing more than 0.1% HSA shows phosphorescence with a lifetime longer than 1 ms. With an increase in irradiation time, phosphorescence intensities and lifetimes of porphyrins increase, depending upon their concentrations and triplet lifetimes, and approach saturated values close to those under deaerated conditions. The experimental results may be interpreted in terms of hypoxia induced by photosensitization in a local environment surrounding the sensitizer. The hypoxia is caused by the reaction between proteins and singlet molecular oxygen generated by photosensitization of porphyrins. Phosphorescence behavior of sensitizers in HSA PBS solution gives significant information for classifying photosensitizers as to their efficacy for photodynamic therapy.  相似文献   

3.
Abstract The efficiency of different sensitizers for photodynamic therapy (PDT) was tested using a model system with a C3H mammary carcinoma growing subcutaneously on the dorsal side of mouse feet. Growth curves were constructed from which growth delay and doubling time in the regrowth phase were calculated. As PDT induced oedema in the mouse foot, this model system also allowed assessment of normal tissue response.
The following sensitizers were tested: hematoporphyrin derivative (HpD), Photofrin II (PII), tetraphenylporphinetetrasulfonate (TPPS4), acridine orange (AO), phthalocyanine tetrasulfonate (PCTS), Al- and Zn-phthalocyanine tetrasulfonate (A1PCTS and ZnPCTS). For tumor control, the following sensitizer efficiencies were found: PII > HpD > AIPCTS > TPPS4 >>> ZnPCTS, PCTS, AO. With regard to sensitizing normal-tissue damage: PII > AIPCTS, TPPS4 > HpD, ZnPCTS, PCTS. The results suggest that AIPCTS should be further evaluated for use in PDT.  相似文献   

4.
Abstract— A new water-soluble porphyrin derivative, 2,4-bis(1-decyloxyethyl)-deuteroporphyrinyl–6,7-bisaspartic acid(C–10-DP), and its metal complexes (Ga, In, Sn, Zn, Mn, Cu, Ni and Fe) were examined for their physicochemical properties (absorption, fluorescene, triplet lifetime and partition coefficient) and photocytotoxicity on HeLa cells. The five derivatives with longer(>1ms) triplet lifetimes (free base, Zn, Ga, In and Sn complexes) exhibited remarkable photocytotoxicity, and the other derivatives (Mn, Cu, Ni and Fe), which had or were deduced to have fairly short (<0.01 ms) triplet lifetimes, manifested no photocytotoxicity, indicating that the triplet lifetime of these derivatives played a significant role in their photocytotoxicity. Cellular fluorescence due to C10-DP and its gallium complex was observed mainly on the plasma membrane at the concentrations showing significant photocytotoxicity with low (<32.6%) cytotoxicity in the dark(2–10 μM).  相似文献   

5.
This work reports on the synthesis, characterization and photophysical studies of phthalocyanine-gold nanoparticle conjugates. The phthalocyanine complexes are: tris-(5-trifluoromethyl-2-mercaptopyridine)-2-(carboxy)phthalocyanine (3), 2,9,17,23-tetrakis-[(1, 6-hexanedithiol) phthalocyaninato]zinc(II) (8) and [8,15,22-tris-(naptho)-2(amidoethanethiol) phthalocyanato] zinc(II)(10). The gold nanoparticles were characterized using transmission electron microscopy, X-ray diffraction, atomic force microscopy and UV-vis spectroscopy where the size was confirmed to be ~5 nm. The phthalocyanine Au nanoparticle conjugates showed lower fluorescence quantum yield values with similar fluorescence lifetimes compared to the free phthalocyanines. The Au nanoparticle conjugates of 3 and 10 also showed higher triplet quantum yields of 0.69 to 0.71, respectively. A lower triplet quantum yield was obtained for the conjugate compared to free phthalocyanine for complex 8. The triplet lifetimes ranged from 70 to 92 μs for the conjugates and from 110 to 304 μs for unbound Pc complexes.  相似文献   

6.
The molecular and electronic structures of the electron transfer series of four-coordinate square-planar nickel complexes with the ligand o-phenylenebis(N'-methyloxamidate), [NiL]z (z = 2-, 1-, 0), have been evaluated by DFT and TDDFT calculations, and most of their experimentally available structural and spectroscopic properties (X. Ottenwaelder et al., Dalton Trans., 2005, DOI: 10.1039/b502478a) have been reasonably reproduced at the B3LYP level of theory. The anionic species [NiL]2- and [NiL]- are genuine low-spin nickel II and nickel III complexes with diamagnetic singlet (S = 0) and paramagnetic doublet (S = 1/2) states, respectively. The nickel III complex presents shorter Ni-N(amidate) bond distances (1.85-1.90 A) than the parent nickel II complex (1.88-1.93 A) and characteristic LMCT bands in the NIR region (lambda max = 794 and 829 nm) while the analogous MLCT bands for the nickel(II) complex are in the UV region (lambda max = 346 and 349 nm). The neutral species [NiL] is a nickel III o-benzosemiquinonediimine pi-cation radical complex with a diamagnetic singlet (S = 0) and a paramagnetic triplet (S = 1) states fairly close in energy but fundamentally different in orbital configuration. The singlet metal-radical ground state results from the antiferromagnetic coupling between the 3d(yz) orbital of the Ni III ion (S(M) = 1/2) and the pi(b) orbital of the benzosemiquinone-type radical ligand (S(L) = 1/2), which have a large overlap and thus strong covalent bonding. The triplet metal-radical excited state involves the ferromagnetic coupling between the Ni III 3d(zx) orbital and the benzosemiquinone-type pi(b) orbital, which are orthogonal to each other. The singlet and triplet states of the nickel III pi-cation radical complex possess characteristic quinoid-type short-long-short alternating sequence of C-C bonds in the benzene ring, as well as intense MLCT transitions in the VIS (lambda max = 664 nm) and NIR (lambda max = 884 nm) regions, respectively.  相似文献   

7.
Photochemical and photophysical measurements were conducted on peripheral and non-peripheral tetrakis- and octakis(4-benzyloxyphenoxy)-substituted zinc phthalocyanines (1, 2 and 3). General trends are described for photodegradation, and fluorescence quantum yields, triplet lifetimes and triplet quantum yields as well as singlet oxygen quantum yields of these compounds in dimethylsulphoxide (DMSO) and toluene. The fluorescence of the complexes is quenched by benzoquinone (BQ), and fluorescence quenching properties are investigated in DMSO and toluene. The effects of the solvents on the photophysical and photochemical parameters of the zinc(II) phthalocyanines (1, 2 and 3) are also reported. Photophysical and photochemical properties of phthalocyanine complexes are very useful for PDT applications.  相似文献   

8.
The purpose of this work was to gain insight into the role played by platelets and endothelial cells in the development of thrombogenic vascular events, observed after in vivo photodynamic therapy (PDT), by studying the in vitro effects of PDT on isolated human platelets and cultured human and bovine endothelial cells. Exposure to Photofrin II (PII) and light caused platelets to rapidly lose their ability to aggregate. Photofrin II alone at high concentrations also exerted inhibitory effects on aggregation. Endothelial cells exposed to PII- and phthalocyanine (GaCl-PcS2,3 or Zn-PCS1,2)-mediated PDT released potent platelet anti- and disaggregating activity which could be identified as prostacyclin by the following criteria: a close correlation between the time and dose dependent anti-aggregating effects and released 6-keto-PGF1 alpha (the spontaneous hydrolysis product of PGI2, determined by radioimmunoassay), the inhibition of these effects by indomethacin, accumulation of 6-keto-PGF1 alpha metabolite in the media of cells treated with PDT (as determined by HPLC analysis), and the absence of evidence for significant nitric oxide production. This prostacyclin release occurred following plasma membrane damage. Although no pro-aggregating activity was observed, endothelial cells were found to release considerable amounts of arachidonic acid and prostaglandin F2 alpha in response to PDT. These data, which indicate powerful anti-thrombogenic effects in vitro, are in sharp contrast to the vascular effects of PDT in vivo which are characterized by severe platelet aggregation, and imply that the in vivo effects involve additional components of the vascular system.  相似文献   

9.
Two calix[4]azacrowns, capped with two aminopolyamide bridges, were used as ligands for the complexation of lanthanide ions [Eu(III), Tb(III), Nd(III), Er(III), La(III)]. The formation of 1:2 and 1:1 complexes was observed, and stability constants, determined by UV absorption and fluorescence spectroscopy, were found to be generally on the order of log beta(11) approximately 5-6 and log beta(12) approximately 10. The structural changes of the ligands upon La(III) complexation were probed by 1H NMR spectroscopy. The two ligands were observed to have opposite fluorescence behaviors, namely, fluorescence enhancement (via blocking of photoinduced electron transfer from amine groups) or quenching (via lanthanide-chromophore interactions) upon metal ion complexation. Long-lived lanthanide luminescence was sensitized by excitation in the pi,pi band of the aromatic moieties of the ligands. The direct involvement of the antenna triplet state was demonstrated via quenching of the ligand phosphorescence by Tb(III). Generally, Eu(III) luminescence was weak (Phi(lum) 相似文献   

10.
The photoactivity for the generation of singlet oxygen, (1)O(2), the key cytotoxic agent in the anticancer treatment known as photodynamic therapy (PDT), and the fluorescence response of the highly electron-deficient tetrakis(thiadiazole)porphyrazines of formula [TTDPzM] (M = Mg(II)(H(2)O), Zn(II), Al(III)Cl, Ga(III)Cl, Cd(II), Cu(II), 2H(I)) were examined (c ? 10(-5) M) in dimethylformamide (DMF) and/or in DMF preacidified with HCl (DMF/HCl; [HCl] = 1-4 × 10(-4) M). The singlet oxygen quantum yield (Φ(Δ)) of all the compounds was determined by using a widely employed procedure based on the selective oxidation of the 1,3-diphenylisobenzofuran (DPBF), modified in part as reported. The list of the Φ(Δ) values indicates excellent photosensitizing properties for the series of compounds carrying "closed shell" metal ions, with values measured in DMF/HCl respectful of the "heavy atom effect" for the first four lighter centers, increasing in the order Mg(II) < Al(III) < Zn(II) < Ga(III). Data of Φ(Δ) concerning the unmetalated species [TTDPzH(2)], present in solution in the form of the corresponding anion [TTDPz](2-), and the Cd(II) and Cu(II) complexes are also presented and discussed. Extensive discussion is also developed on the fluorescence quantum yield values Φ(F), with data on the Mg(II) and Al(III) compounds in DMF/HCl (0.44 and 0.53, respectively) indicative of promising perspectives for applications in fluorescence imaging techniques. The Φ(F) data of the studied porphyrazine series, Φ(F)(Pz), correlate linearly with those of the homologous phthalocyaninato complexes, Φ(F)(Pc), suggesting a closely similar behaviour between the two classes of compounds. The incorporation of [TTDPzZn] into liposomes was successfully achieved following the detergent depletion method (DDM) from a mixed micellar solution by means of gel-filtration. Retention of [TTDPzZn] (~40%) in its photoactive monomeric form into liposomes is proved by absorption and fluorescence spectra, this proposing the Zn(II) complex as a promising candidate for use in PDT.  相似文献   

11.
The synthesis, characterization and photophysical properties of two perfluoroalkyl (5,10,15,20-tetrakis-[trifluoromethyl]- and [heptafluoropropyl]-porphyrin) and two perfluoroaryl (5,10,15,20-tetrakis-[2,6-difluorophenyl]- and [pentafluorophenyl]-porphyrin) are described, with reference to their potential in both photodynamic therapy (PDT) and in vivo imaging by fluorescence and 19F nuclear magnetic resonance spectroscopy. Absorption and fluorescence spectra, fluorescence lifetimes and triplet-singlet difference spectra are reported. Triplet yields have been obtained by flash photolysis and pulse radiolysis, whereas yields of sensitized singlet oxygen formation have been determined by time-resolved phosphorimetry. All four compounds show high yields of triplet formation and singlet oxygen sensitization. The spectral properties, stability and attractive solubility characteristics of the perfluoroalkyl derivatives make them particularly suitable candidates for future study for applications in PDT.  相似文献   

12.
THE EFFECTS OF LOW DENSITY LIPOPROTEINS ON UPTAKE OF PHOTOFRIN II   总被引:1,自引:0,他引:1  
The cellular uptake of Photofrin II (PII) was studied using fluorescence imaging and chemical extraction. The influence of serum and low density lipoproteins (LDL) was examined under a variety of experimental conditions employing cultured human cells of different origins as well as a subcutaneously SMT-F tumor implanted in mice. Results showed that serum inhibited PII uptake. In general, LDL also inhibits PII uptake with the exception of an initial increase in the first 10-30 min when the cellular concentration of PII was measured by fluorescence imaging instead of chemical extraction. Our results suggest a possible de-aggregation process occurring upon internalization or binding of PII to LDL.  相似文献   

13.
Pt(II) Schiff base complexes containing pyrene subunits were prepared using the chemistry-on-complex approach. This is the first time that supramolecular photochemical approach has been used to tune the photophysical properties of Schiff base Pt(II) complexes, such as emission wavelength and lifetimes. The complexes show intense absorption in the visible region (ε = 13100 M(-1) cm(-1) at 534 nm) and red phosphorescence at room temperature. Notably, much longer triplet excited state lifetimes (τ = 21.0 μs) were observed, compared to the model complexes (τ = 4.4 μs). The extension of triplet excited state lifetimes is attributed to the establishment of equilibrium between the metal-to-ligand charge-transfer ((3)MLCT) state (coordination centre localized) and the intraligand ((3)IL) state (pyrene localized), or population of the long-lived (3)IL triplet excited state. These assignments were fully rationalized by nanosecond time-resolved difference absorption spectra, 77 K emission spectra and density functional theory calculations. The complexes were used as triplet sensitizers for triplet-triplet-energy-tranfer (TTET) processes, i.e. luminescent O(2) sensing and triplet-triplet annihilation (TTA) based upconversion. The O(2) sensitivity (Stern-Volmer quenching constant) of the complexes was quantitatively evaluated in polymer films. The results show that the O(2) sensing sensitivity of the pyrene containing complex (K(SV) = 0.04623 Torr(-1)) is 15-fold of the model complex (K(SV) = 0.00313 Torr(-1)). Furthermore, significant TTA upconversion (upconversion quantum yield Φ(UC) = 17.7% and the anti-Stokes shift is 0.77 eV) was observed with pyrene containing complexes being used as triplet sensitizers. Our approach to tune the triplet excited states of Pt(II) Schiff base complexes will be useful for the design of phosphorescent transition metal complexes and their applications in light-harvesting, photovoltaics, luminescent O(2) sensing and upconversion, etc.  相似文献   

14.
The phosphorescence spectra and triplet state lifetimes of palladium octaethylporphyrin (PdOEP), palladium octaethylchlorin (PdOEC) and palladium 2,3-dimethyloctaethylisobacteriochlorin (PdOEiBC) in n-octane Shpolskii matrices at 77 K are reported. The lifetime and T(1)/S(0) origin energy of each complex are: PdOEP, 1.90+/-0.04 ms, 15162 cm(-1); PdOEC, 0.43+/-0.03 ms, 12547 cm(-1) and PdOEiBC, 0.59+/-0.03 ms, 12863 cm(-1).  相似文献   

15.
We report an efficient triplet state self-quenching mechanism in crystals of eight benzophenones, which included the parent structure (1), six 4,4'-disubstituted compounds with NH(2) (2), NMe(2) (3), OH (4), OMe (5), COOH (6), and COOMe (7), and benzophenone-3,3',4,4'-tetracarboxylic dianhydride (8). Self-quenching effects were determined by measuring their triplet-triplet lifetimes and spectra using femtosecond and nanosecond transient absorption measurements with nanocrystalline suspensions. When possible, triplet lifetimes were confirmed by measuring the phosphorescence lifetimes and with the help of diffusion-limited quenching with iodide ions. We were surprised to discover that the triplet lifetimes of substituted benzophenones in crystals vary over 9 orders of magnitude from ca. 62 ps to 1 ms. In contrast to nanocrystalline suspensions, the lifetimes in solution only vary over 3 orders of magnitude (1-1000 μs). Analysis of the rate constants of quenching show that the more electron-rich benzophenones are the most efficiently deactivated such that there is an excellent correlation, ρ = -2.85, between the triplet quenching rate constants and the Hammet σ(+) values for the 4,4' substituents. Several crystal structures indicate the existence of near-neighbor arrangements that deviate from the proposed ideal for "n-type" quenching, suggesting that charge transfer quenching is mediated by a relatively loose arrangement.  相似文献   

16.
The structural effect on the metal-to-ligand charge transfer (MLCT) excited-state lifetime has been investigated in bis-tridentate Ru(II)-polypyridyl complexes based on the terpyridine-like ligands [6-(2,2'-bipyridyl)](2-pyridyl)methane ( 1) and 2-[6-(2,2'-bipyridyl)]-2-(2-pyridyl)propane ( 2). A homoleptic ([Ru( 2) 2] (2+)) and a heteroleptic complex ([Ru(ttpy)( 2)] (2+)) based on the new ligand 2 have been prepared and their photophysical and structural properties studied experimentally and theoretically and compared to the results for the previously reported [Ru( 1) 2] (2+). The excited-state lifetime of the homoleptic Ru (II) complex with the isopropylene-bridged ligand 2 was found to be 50 times shorter than that of the corresponding homoleptic Ru (II) complex of ligand 1, containing a methylene bridge. A comparison of the ground-state geometries of the two homoleptic complexes shows that steric interactions involving the isopropylene bridges make the coordination to the central Ru (II) ion less octahedral in [Ru( 2) 2] (2+) than in [Ru( 1) 2] (2+). Calculations indicate that the structural differences in these complexes influence their ligand field splittings as well as the relative stabilities of the triplet metal-to-ligand charge transfer ( (3)MLCT) and metal-centered ( (3)MC) excited states. The large difference in measured excited-state lifetimes for the two homoleptic Ru (II) complexes is attributed to a strong influence of steric interactions on the ligand field strength, which in turn affects the activation barriers for thermal conversion from (3)MLCT states to short-lived (3)MC states.  相似文献   

17.
Peripherally and non-peripherally tetrasubstituted-[(N-methyl-2-pyridylthio)]phthalocyaninato magnesium (II) (5 and 6) and chloro aluminium (III) (7 and 8) tetraiodide have been synthesized and characterized. The photophysical properties of the complexes in dimethyl sulfoxide (DMSO) and aqueous medium in the presence and absence of cremophore EL have been studied. These complexes show high solubility in aqueous medium though they were aggregated. The triplet state quantum yields (FT) and the triplet lifetimes (tT) were found to be higher in DMSO with ΦT ranging from 0.32 to 0.51, while tT ranged from 282 to 622 ms in DMSO, compared to aqueous medium (pH 7.4 buffer) where ΦT ranged from 0.15 to 0.19 and tT from 26 to 35 ms. Addition of cremophore EL in aqueous solution resulted in partial disaggregation and increased photoactivity. The fluorescence lifetimes of the complexes showed strong dependence on their immediate environment. The ionic magnesium(II) and aluminium(III) phthalocyanines strongly bind to bovine serum albumin (BSA).   相似文献   

18.
Glucoconjugated analogues of the meta-hydroxyphenyl porphyrin (m-THPP) and meta-hydroxyphenyl chlorin (m-THPC) has been recently synthesized. The characteristics of their triplet states have been determined with regard to their involvement in the photodynamic (PDT) efficiency. In the case of porphyrin derivatives, triplet quantum yields (Phi(T)) were ranging from 0.42 to 0.55 and triplet life times (tau(T)) from 1 to 5 micros. High reaction rate constants (k(q)) with molecular oxygen (k(q): 1.2-1.6 x 10(9)s(-1)) have been found. The triplet lifetimes of chlorin derivatives were about four times higher than those of porphyrins whereas the Phi(T) and k(q) values remained quite similar. Singlet oxygen yields of glucosylated and non-glucosylated porphyrins and chlorins were not significantly different within experimental errors (Phi(Delta)((1)O(2)): 0.41-0.58). Furthermore, it has been shown that glucoconjugated photosensitizers could undergo associations with the methyl-beta-cyclodextrin (Me-beta-CD) which exhibit high triplet lifetimes and singlet oxygen yields ranging from 0.27 to 0.48.  相似文献   

19.
Photodynamic therapy (PDT) has been considered as a potential therapy for superficial bladder carcinomas. Cutaneous photosensitivity and reduction of bladder capacity are the two well-known complications following systemic administration of the commonly used photosensitizer, Photofrin II® (PII). The objective of the present study was to evaluate whether intravesical. (i.b.) instillation of photosensitizers for PDT of bladder cancer might be a more suitable treatment method. Female Fischer rats were utilized to develop orthotopic and heterotopic bladder tumor models. Rats bearing orthotopic bladder tumors were treated either intravesically or intravenously with graded doses of 5-aminolevulinic acid (ALA) or PII. Normal rats received the same doses of ALA or PII. As well, rats bearing heterotopic tumor were studied for comparison. The biodistribution times (times allowed for tissue uptake and bioconversion following drug administration) were 2, 4 or 6 h. Porphyrin fluorescence intensities within tumor, urothelium, submucosa, bladder muscularis and abdominal muscle were quantitated by confocal laser scanning microscopy. Following intravenous (i.v.) injection of ALA, tumor protoporphyrin IX (PpIX) levels peaked at 4 h and diminished by 6 h. The PpIX ratios of tumor-to-bladder mucosa, submucosa and muscle layers were 3:1, 5:1 and 8:1, respectively, 4 h following 1000 mg/kg ALA injection. After ALA instillation, the optimal biodistribution time appeared to be 4 h. Bladder instillation provided comparable tumor labeling with the i.v. route, but lost selectivity of PpIX accumulation between tumor and normal urothelium. The PpIX ratio of tumor-to-bladder muscularis was 5:1. After i.b. instillation of PII, porphyrin fluorescence was detected only within tumor and urothelium, while porphyrin fluorescence was mainly located in bladder submucosa following i.v. injection. Intravesical administration of ALA or PII might be feasible for PDT of superficial bladder cancers.  相似文献   

20.
PHOTOREACTIONS OF MACROCYCLIC DYES BOUND TO HUMAN SERUM ALBUMIN   总被引:2,自引:1,他引:2  
The photophysical properties of tetrakis(4-sulfonatophenyl)porphyrin (H2TSPP), its tin (IV) complex (SnTSPP), aluminium(III) trisulfonatophthalocyanine (AIPCS), and the corresponding zinc(II) complex (ZnPCS), have been measured in H2O, D2O, and upon binding to human serum albumin (HSA). The triplet excited states of the various macrocyclic dyes generate singlet molecular oxygen, O2(1 delta g) in high quantum yield upon illumination in O2-saturated solution, even in the presence of HSA. The triplet states also abstract an electron from 4-aminophenol, forming the radical anion of the macrocycle. Quenching rate constants and quantum yields have been measured for the various processes in the presence and absence of HSA. It is found that HSA binds all the dyes at nonspecific sites close to the interface in such a manner that the dyes remain accessible to species residing in the solution phase. Dyes that do not possess axial ligands complexed to the central cation (e.g. H2TSPP, ZnPCS) are able to bind also at a deeper, more specific site on the protein where they are protected from species in solution. Under such conditions, triplet quenching by 4-aminophenol is restricted to long-distance electron tunnelling, for which the rate is relatively slow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号