首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent advances in the field of laser desorption/laser ionization mass spectrometry (LD/LI/MS) have renewed interest in these separation methods for fast analysis of chemical species adsorbed on soot particles. These techniques provide mass-separation of the desorbed phase with high selectivity and sensitivity and require very small soot samples. Combining LD/LI/MS with in situ measurements of soot and gaseous species is very promising for a better understanding of the early stage of soot growth in flames. In this work, three lightly sooting laminar jet flames (a methane diffusion flame and two premixed acetylene flames of equivalence ratio (?) = 2.9 and 3.5) were investigated by combining prompt and 50 ns-delayed laser-induced incandescence (LII) for spatially resolved measurements of soot volume fraction (fv) and laser-induced fluorescence (LIF) of polycyclic aromatic hydrocarbons (PAH). Soot and PAH calibration is performed by two-colour cavity ring-down spectroscopy (CRDS) at 1064 and 532 nm. Soot particles were sampled in the flames and analysed by LD/LI/Time-of-flight- MS. Soot samples are cooled to −170 °C to avoid adsorbed phase sublimation (under high vacuum in the TOF-MS). Our set-up is novel because of its ability to measure very low concentration of soot and PAH together with the ability to identify a large mass range of PAHs adsorbed on soot, especially volatile two-rings and three-rings PAHs. Studied flames exhibited a peak fv ranging from 15 ppb (acetylene, ? = 2.9) to 470 ppb (acetylene, ? = 3.5). Different mass spectra were found in the three flames, each exhibiting one predominant PAH mass; 202 amu (4-rings) in methane, 178 amu (3-rings) in acetylene,? = 2.9 and 128 amu (2-rings) in acetylene, ? = 3.5. These variations with flame condition contrasts with other recent studies and is discussed. The other PAH masses ranged from 102 (C8H6) to 424 amu (C34H16) and are well predicted by the stabilomer grid of Stein and Farr.  相似文献   

2.
Scanning mobility particle sizer (SMPS) and transmission electron microscopy (TEM) studies were conducted for TiO2 and soot particles. The TiO2 particles were produced from a premixed stagnation ethylene-oxygen-argon flame (? = 0.36) doped with titanium tetraisopropoxide. Soot was generated from a burner-stabilized premixed ethylene-oxygen-argon flame (? = 2.5). The close agreement among SMPS, TEM, and X-ray diffraction results for TiO2 nanoparticles demonstrates that the probe sampling/mobility measurement technique is accurate for on-line analysis of the size distribution of particles as small as 3 nm in diameter. In the case of soot, notable disagreement between the SMPS and TEM sizes was found and attributable to the fact that the soot taken from the flame studied herein is liquid-like and that upon deposition on the TEM grid, the primary particles do not retain their sphericity. This interpretation is supported by measurements with photo ionization aerosol mass spectrometry, small angle neutron scattering, and thermocouple particle densitometry.  相似文献   

3.
We have measured sooting tendencies of 72 nonvolatile aromatic hydrocarbons, only five of which have been previously reported in the literature. The tested compounds include long-chain alkylbenzenes up to tridecylbenzene, methyl-substituted benzenes, naphthalenes, biaryls, and polycyclic aromatic hydrocarbons (PAH) with up to four rings. Sooting tendency was defined as the maximum soot concentration fv,max in a methane/air coflow nonpremixed flame with 5-80 ppm of the aromatic added to the fuel. The fv,max were converted into Yield Sooting Indices (YSI’s) by the equation YSI = Cfv,max + D, where C and D are constants chosen so that YSI-2-heptanone = 17 and YSI-phenanthrene = 191. The aromatics were dissolved in 2-heptanone and added to the fuel mixture with a syringe pump. Soot concentrations were measured with laser-induced incandescence (LII). The burner and fuel lines were heated; time-resolved soot measurements verified that all of the test compounds were quantitatively transmitted to the flame without losses to the walls. The uncertainties in the results range from ±3 to ±10%.  相似文献   

4.
The effects of pressure on soot formation and the structure of the temperature field were studied in co-flow methane-air laminar diffusion flames over a wide pressure range, from 10 to 60 atm in a high-pressure combustion chamber. The selected fuel mass flow rate provided diffusion flames in which the soot was completely oxidized within the visible flame envelope and the flame was stable at all pressures considered. The spatially resolved soot volume fraction and soot temperature were measured by spectral soot emission as a function of pressure. The visible (luminous) flame height remained almost unchanged from 10 to 100 atm. Peak soot concentrations showed a strong dependence on pressure at relatively lower pressures; but this dependence got weaker as the pressure is increased. The maximum conversion of the fuel’s carbon to soot, 12.6%, was observed at 60 atm at approximately the mid-height of the flame. Radial temperature gradients within the flame increased with pressure and decreased with flame height above the burner rim. Higher radial temperature gradients near the burner exit at higher pressures mean that the thermal diffusion from the hot regions of the flame towards the flame centerline is enhanced. This leads to higher fuel pyrolysis rates causing accelerated soot nucleation and growth as the pressure increases.  相似文献   

5.
We summarize our current research on combustion aerosols. First, sampling devices for the analyses of flame gases are described. The flame gas samples are investigated by mass spectroscopy and by standard aerosol techniques. Time-of-flight mass spectroscopy is well suited to study formation and growth of soot precursor molecules. Fullerenes can also be seen in some mass spectra of flame gases. Presumably, the fullerenes are evaporated from small soot particles in the mass spectrometer by the ionizing laser. Size spectra of soot particles from the flame are presented. The flame is optionally seeded with palladium aerosol to demonstrate that the particle size distribution is not altered during the sampling procedure. It is found that soot particles are already present low in the flame where large molecules are absent.Photoemission is applied to study surface properties of soot particles from the flame. It is shown that the surface of the particles is covered with polycyclic aromatic hydrocarbons (PAH). The PAH can be removed by heating and the properties of the carbon core are revealed. One can thereby distinguish a soot growth from a soot burnout region in the flame. Time-resolved desorption experiments of perylene (a PAH) from model aerosol particles are presented. It is shown that they follow a first order rate law. The photoelectric PAH sensor is introduced as a personal air quality monitor. The danger from inhaling combustion aerosol can be expressed in units of standard cigarettes.  相似文献   

6.
Soot formation is compared in turbulent diffusion flames burning a commercial Diesel and two Diesel surrogates containing n-decane and α-methylnaphthalene. A burner equipped with a high-efficiency atomisation system has been specially designed and allows the stabilisation of liquid fuels flames with similar hydrodynamics conditions. The initial surrogate composition (70% n-decane, 30% α-methylnaphthalene) was previously used in the literature to simulate combustion in Diesel engines. In this work, a direct comparison of Diesel and surrogates soot tendencies is undertaken and relies on soot and fluorescent species mappings obtained respectively by Laser-Induced Incandescence (LII) at 1064 nm and Laser-Induced Fluorescence at 532 nm. LIF was assigned to soot precursors and mainly to high-number ring Polycyclic Aromatic Hydrocarbons (PAH). The initial surrogate was found to form 40% more soot than the tested Diesel. Consequently, a second surrogate containing a lower α-methylnaphthalene concentration (20%) has been formulated. That composition which presents a Threshold Soot Index (TSI) very close to Diesel one is also consistent with our Diesel composition that indicates a relatively low PAH content. The spatially resolved measurements of soot and fluorescent soot precursors are quite identical (in shape and intensity) in the Diesel and in the second surrogate flames. Furthermore the concordance of the LII temporal decays suggests that a similar growth of the primary soot particles has occurred for Diesel and surrogates. In addition, the comparison of the LII fluence curves indicates that physical/optical properties of soot contained in the different flames might be similar. The chemical composition present at the surface of soot particles collected in Diesel and surrogate flames has been obtained by laser-desorption ionisation time-of-flight mass spectrometry. An important difference is found between Diesel and surrogate samples indicating the influence of the fuel composition on soot content.  相似文献   

7.
A combined computational and experimental investigation that examines the relationship of soot formation and NO in coflow ethylene air diffusion flames is presented. While both NO and soot formation are often studied independently, there is a need to understand their coupled relationship as a function of system parameters such as fuel type, temperature and pressure. The temperature decrease due to radiative losses in systems in which significant soot is produced can affect flame length and other temperature-dependent processes such as the formation of NO. The results of a computational model that includes a sectional representation for soot formation with a radiation model are compared against laser-induced fluorescence measurements of NO. The sooting characteristics of these flames have been studied previously. Experimentally, a laser near 225.8 nm is used to excite the γ(0, 0) band in NO. Spectrally resolved fluorescence emission is imaged radially, for the (0, 0), (0, 1), (0, 2), (0, 3), and (0, 4) vibrational bands, at varying axial heights to create a two-dimensional image of NO fluorescence. A reverse quenching correction is applied to the computational results to determine an expected fluorescence signal for comparison with experimental results. Modeling results confirm that Fenimore NO is the dominant mechanism for NO production and suggest that for lightly sooting flames (peak soot volume fraction < 0.5 ppm), soot reduces only the Zeldovich NO formation (by a factor of two). For flames with increased soot levels (peak soot volume fraction ∼ 4 ppm), the model indicates not only that Zeldovich NO decreases by a factor of 2.5 through radiation loss, but that non-Zeldovich NO is reduced in the top center of the flame by about 30% through the oxidation of soot.  相似文献   

8.
9.
A numerical and experimental study is performed to investigate soot formation from jet fuel in a laminar coflow diffusion flame. The combustion chemistry of the fuel is simulated using (1) the MURI jet fuel surrogate (Dooley et al. 2012) with a modestly reduced Ranzi mechanism (Ranzi et al. 2012), and (2) the recently proposed HyChem model (Xu et al. 2018) combined with the KAUST PAH mechanism 2 (Wang et al. 2013). The two reaction mechanisms are coupled with a sectional soot model to simulate a coflow diffusion flame of methane doped with the MURI jet fuel surrogate. The combined laser extinction and two-angle elastic light scattering method is used to perform non-intrusive in situ measurements of soot volume fraction, primary particle diameter and number density. The good agreement including soot particle size and number density between the experimental data and the simulation results computed with the reduced Ranzi mechanism demonstrate the robustness of the soot model to changes in fuel composition, as the model parameters are unchanged with a previous numerical study of soot formation of n-propylbenzene/n-dodecane mixtures (Zhang and Thomson, 2018). The computation with the combined HyChem/KAUST mechanism predicts similar results as the computation with the detailed chemistry of the reduced Ranzi mechanism for fuel breakdown, thus the basic premise of the HyChem model that the fuel decomposition process can be greatly simplified with the lumped reaction steps is supported. The results also show that by adding a PAH growth scheme to the HyChem model, the approach can be used to predict soot formation from jet fuel combustion in a laminar coflow diffusion flame. Finally, the dependency of the soot prediction on PAH chemistry is discussed and it is suggested that more experimental data is needed to validate the PAH mechanism and improve the predictive accuracy of the model.  相似文献   

10.
Experimental data and modelling results of the main products and intermediates from a fuel-rich sooting premixed cyclohexane flame were presented in this work. Model predictions well agree with experimental data both in sooting and non-sooting flames. Major and minor species are properly predicted, together with the soot yield. The initial benzene peak was demonstrated to be due to the fast dehydrogenation reactions of the cycloalkane, which gives rise to cyclohexene and cyclohexadiene both via molecular and radical pathways. Once formed cyclohexadiene quickly forms benzene whereas in the postflame zone, benzene comes from the recombination and addition reactions of small radicals, with C3H3 + C3H3 playing the most important role in these conditions. An earlier soot inception was detected in the cyclohexane flame with respect to a n-hexane flame and this feature is not reproduced by the model that foresees soot formation significant only in the second part of the flame. The model insensitivity of soot to the reactant hydrocarbon was also observed comparing the predictions of three flames of cyclohexane, 1-hexene and n-hexane with the same temperature profile. A sensitivity analysis revealed that soot primarily comes from the HACA mechanism for the three flames, acetylene being the key species in the nucleation. Experimental data on soot inception seem to indicate the importance of the early formation of benzene, that depends on the fuel structure. It is thus important to further investigate the role of benzene and aromatics in order to explain this discrepancy.  相似文献   

11.
Detailed kinetic modeling and flame-sampling molecular-beam time-of-flight mass spectrometry are combined to unravel important pathways leading to the formation of benzene in a premixed laminar low-pressure 1,3-butadiene flame. The chemical kinetic model developed is compared with new experimental results obtained for a rich (? = 1.8) 1,3-butadiene/O2/Ar flame at 30 Torr and with flame data for a similar but richer (? = 2.4) flame reported by Cole et al. [Combust. Flame 56 (1) (1984) 51-70]. The newer experiment utilizes photoionization by tunable vacuum-ultraviolet synchrotron radiation, which allows for the identification and separation of combustion species by their characteristic ionization energies. Predictions of mole fractions as a function of distance from the burner of major combustion intermediates and products are in overall satisfactory agreement with experimentally observed profiles. The accurate predictions of the propargyl radical and benzene mole fractions permit an assessment of potential benzene formation pathways. The results indicate that C6H6 is formed mainly by the C3H3 + C3H3 and i-C4H5 + C2H2 reactions, which are roughly of equal importance. Smaller contributions arise from C3H3 + C3H5. However, given the experimental and modeling uncertainties, other pathways cannot be ruled out.  相似文献   

12.
Modelling of aromatics and soot formation from large fuel molecules   总被引:2,自引:0,他引:2  
There is a need for prediction models of soot particles and polycyclic aromatic hydrocarbons (PAHs) formation in parametric conditions prevailing in automotive engines: large fuel molecules and high pressure. A detailed kinetic mechanism able to predict the formation of benzene and PAHs up to four rings from C2 fuels, recently complemented by consumption reactions of decane, was extended in this work to heptane and iso-octane oxidation. Species concentrations measured in rich, premixed flat flames and in a jet stirred reactor (JSR) were used to check the ability of the mechanism to accurately predict the formation of C2 and C3 intermediates and benzene at pressures ranging from 0.1 to 2.0 MPa. Pathways analyses show that propargyl recombination is the only significant route to benzene in rich heptane and iso-octane flames. When included as the first step of a soot particle formation model, the gas-phase kinetic mechanism predicts very accurately the final soot volume fraction measured in a rich decane flame at 0.1 MPa and in rich ethylene flames at 1.0 and 2.0 MPa.  相似文献   

13.
Laser-induced incandescence is a technique which enables the measurement of soot volume fractions. However, the laser-induced soot emission might be affected by a fluorescence background generally ascribed to the polycyclic aromatic hydrocarbon compounds (PAHs) present at the soot location. In this paper, spatially resolved distributions of PAH absorbance and soot are obtained in sooting diffusion flames. The original method developed here consists in comparing the emission distributions induced by two different laser wavelengths: (1) at 1064 nm emission signals are exempt from PAH fluorescence and (2) at 532 nm both soot incandescence and PAH emission contribute to the total signal. In addition, the absolute absorption coefficient of the PAH mixture is determined by comparing absorption measurements obtained by cavity ring-down spectroscopy (CRDS) at 1064 nm and 532 nm. The proposed method can provide highly sensitive 2D imaging of PAHs and soot using the fundamental and the second-harmonic frequencies of a single YAG laser. Finally, 2D distributions of PAH absorbance and soot volume fraction calibrated by CRDS are obtained in two diffusion flames, particularly in a very low-sooting flame exhibiting a maximum PAH absorbance of 6×10-4 cm-1 and a maximum soot volume fraction of 3 ppb only. The respective spatial distributions of PAHs and soot are shown to vary with the initial C/O ratio. PACS 33.20.Lg; 42.62.Fi; 44.40.+a  相似文献   

14.
The combustion of stoichiometric Ethyl-hexyl-nitrate (EHN)-doped n-heptane/oxygen/argon and (EHN)-doped n-heptane/air mixtures, respectively, was investigated in a low-pressure burner with a molecular-beam mass spectrometer and ignition delay-time (τign) measurements were performed in a high-pressure shock tube. The experiments with the low-pressure flame were used for the determination of the flame structure including concentration profiles of reactants, products and important intermediates in the flame. The shock tube experiments provided τign for a temperature range of 690 K ? T ? 1275 K at a pressure of 40 ± 2 bar for stoichiometric and lean mixtures under engine relevant conditions. A chemical mechanism for n-heptane/EHN mixtures was developed from an automatically generated mechanism for n-heptane by manually adding reactions to describe the influence of EHN. This mechanism was validated against the shock-tube data for various temperatures, levels of EHN-doping and equivalence ratios by homogeneous reactor calculations.The ignition delay times predicted by the model agree well with the shock tube results for a large range of temperatures, equivalence ratios and EHN concentrations. The influence of EHN onto ignition delay was largest in the low-temperature regime (770-1000 K).Numerical analysis suggests that the prevalent reason for the ignition-enhancing effect of EHN is the formation of highly reactive heptyl radicals by thermal decomposition of EHN. Due to this comparatively simple and generic mechanism, EHN is expected to have a similar ignition-enhancing effect also for other hydrocarbon fuels.  相似文献   

15.
We report the first quantitative and calibration-free in situ C2H2 measurement in a flame environment using direct Tunable Diode Laser Absorption Spectroscopy(TDLAS). Utilizing a fiber-coupled Distributed Feedback diode laser near 1535 nm we measured spatially resolved, absolute C2H2 concentration profiles in a laminar non-premixed CH4/air flame supported on a modified Wolfhard-Parker slot burner with N2 purge slots to minimize end flames. We developed a wavelength tuning scheme combining laser temperature and current modulation to record with a single diode laser a mesh of 37 overlapping spectral windows and generate an ∼7 nm (30 cm−1) wide, high-resolution absorption spectrum centered at 1538 nm. Experimental C2H2 spectra in a reference cell showed excellent agreement with simulations using HITRAN2004 data. The enhanced wavelength coverage was needed to establish correct C2H2 line identification and selection in the very congested high temperature flame spectra and led to the P17e line as the only candidate for in situ detection of C2H2 in the flame. We used highly efficient optical disturbance correction algorithms for treating transmission and background emission fluctuations in combination with a multiple Voigt line Levenberg-Marquardt fitting algorithm and Pt/Rh thermocouple measurements to achieve fractional optical resolutions of up to 4 × 10−5 OD (1σ) in the flame (T up to 2000 K). Temperature dependent C2H2 detection limits for the P17e line were 60 to 480 ppm. By translating the burner through the laser beam with a DC motor we obtained spatially resolved, absolute C2H2 concentration profiles along the flame sheet with 0.5 mm spatial resolution as measured with a knife edge technique. The TDLAS-based, transverse C2H2 concentration profiles without any scaling are in excellent agreement with published mass spectrometric C2H2 data for the same flame supported on a similar burner, thus validating our calibration-free TDLAS measurements.  相似文献   

16.
The present work addresses the soot formation parameters behind reflected shock waves and the identification of adsorbed species on their surface. Soot induction delay times and yields have been experimentally determined in the case of toluene pyrolysis highly diluted in argon for the following conditions: the initial carbon atoms concentration was kept constant around 1 × 1018 C atoms cm−3, reflected shock pressure and temperature ranges of 1135-1600 kPa and 1470-2230 K, respectively. The decrease of the induction time, as the temperature is raised, was described using an Arrhenius type expression while, for the bell-shaped evolution of the soot yield versus the temperature, a modified Gaussian expression was derived. Using TEM analysis, the mean particle diameter was found to decrease from 35 to 20 nm as the temperature is raised from 1475 to 2135 K. The micro-texture of the soot sample was found to vary as the temperature is raised, leading to a more organised structure. The adsorbed species on these soot were characterized using laser desorption/ionization time of flight mass spectrometer. Results indicate that for temperatures below 1600 K, PAHs in the 178-572 atomic mass units (amu) range were identified. PAHs range was limited to 178-374 amu above 1900 K and they were of benzenoid type above 1600 K. The amount of species adsorbed on the soot surface was found to be inversely proportional to the soot yield with a maximum for the lower temperature domain.  相似文献   

17.
Cyclopentadienyl (CPDyl) was generated for study by oxidizing and pyrolizing 1,3-cyclopentadiene (CPD) in Princeton’s adiabatic, atmospheric pressure flow reactor. This study used nitrogen carrier gas, initial CPD concentrations from 1000 to 3000 ppm by volume (ppmv), equivalence ratios from fuel lean (? = 0.6) to pyrolytic conditions (? = 100) and initial temperatures from 1100 to 1200 K. The reaction progress was followed from 5 to 150 ms using a water cooled sample probe and GC-FID analysis of C1-C14 species. The oxidation results show that CPD and CPDyl react via 19 pathways to yield 22 hydrocarbon intermediates. Analysis of the oxidative CPDyl ring opening pathways reveals the importance of the 2,4-cyclopentadienoxy (c-C5H5O) β-scission reaction: c-C5H5O ↔ CHCH-CHCH-CHO. The fastest theoretical mechanism has a calculated unimolecular high-pressure rate constant of 2.00 × 1013e−7215/T s−1 which is seven orders of magnitude larger at 1150 K than the previous literature estimate. Cyclopentadienone (CPDone) has been assumed to be an important intermediate in C5 ring oxidation even though it has not been unambiguously identified in the combustion environment. A detection limit of 20 ppmv for CPDone in the present apparatus failed to note any CPDone. A set of mechanistic pathways for the C5 ring oxidation includes steps to avoid unrealistic CPDone production is presented. The complex mechanism illustrates the need for detailed models to understand the combustion of aromatics and soot precursors. The article stresses the importance of CPDyl in the formation of aromatic rings during combustion, which subsequently leads to polycyclic aromatic hydrocarbons (PAH) and soot precursors.  相似文献   

18.
Soot growth from inception to mass-loading is studied in a wide range of molecular weights (MW) from 105 to 1010u by means of size exclusion chromatography (SEC) coupled with on-line UV-visible spectroscopy. The evolution of MW distributions of soot is also numerically predicted by using a detailed kinetic model coupled with a discrete-sectional approach for the modeling of the gas-to-particle process. Two premixed flames burning n-heptane in slightly sooting and heavily sooting conditions are studied. The effect of aromatic addition to the fuel is studied by adding n-propylbenzene (10% by volume) to n-heptane in the heavily sooting condition. A progressive reduction of the MW distribution from multimodal to unimodal is observed along the flames testifying the occurrence of particle growth and agglomeration. These processes occur earlier in the aromatic-doped n-heptane flame due to the overriding role of benzene on soot formation which results in bigger young soot particles. Modeled MW distributions are in reasonable agreement with experimental data although the model predicts a slower coagulation process particularly in the slightly sooting n-heptane flame. Given the good agreement between model predictions and experiments, the model is used to explore the role of fuel chemistry on MW distributions. Two flames of n-heptane and n-heptane/n-propylbenzene in heavily sooting conditions with the same temperature profile and inert dilution are modeled. The formation of larger soot particles is still evident in the n-heptane/n-propylbenzene flame with respect to the n-heptane flame in the same operating conditions of temperature and dilution. In addition the model predicts a larger formation of molecular particles in the flame containing n-propylbenzene and shows that soot inception occurs in correspondence of their maximum formation thus indicating the importance of molecular growth in soot inception.  相似文献   

19.
Laminar flame speeds were accurately measured for CO/H2/air and CO/H2/O2/helium mixtures at different equivalence ratios and mixing ratios by the constant-pressure spherical flame technique for pressures up to 40 atmospheres. A kinetic mechanism based on recently published reaction rate constants is presented to model these measured laminar flame speeds as well as a limited set of other experimental data. The reaction rate constant of CO + HO2 → CO2 + OH was determined to be k = 1.15 × 105T2.278 exp(−17.55 kcal/RT) cm3 mol−1 s−1 at 300-2500 K by ab initio calculations. The kinetic model accurately predicts our measured flame speeds and the non-premixed counterflow ignition temperatures determined in our previous study, as well as homogeneous system data from literature, such as concentration profiles from flow reactor and ignition delay time from shock tube experiments.  相似文献   

20.
We report on the development of planar laser-induced fluorescence (PLIF) for CH imaging with improved detection sensitivity for single-shot investigations of turbulent, lean, premixed flames. A ring-cavity, pulsed Alexandrite laser was frequency-doubled to excite the lines in the R-branch band-head of the B-X (0,0) band and broadband fluorescence from the B-X (0,1), A-X (1,1) and (0,0) bands, overlapping in the spectral range around 431 nm, was collected. The employed Alexandrite laser, which is characterized by its long pulse duration (150 ns), gives a tunable laser beam around 775 nm with a pulse energy for the second harmonic at the CH absorption wavelength of about 70 mJ. Moreover, the laser has the possibility to be operated in narrow bandwidth (100 MHz) or broad bandwidth (8 cm−1). An introductory high resolution excitation scan over the R-branch band-head was performed and, in addition, saturated excitation with the broadband option of the laser was investigated. By simultaneous excitation of several rotational transitions and to bring these transitions close to saturation, high signal-to-noise ratios were reached over a wide range of equivalence ratios. A sharp and thin CH layer was observed in single-shot PLIF images from laminar premixed methane/air flames from Φ = 0.6 to Φ = 1.5. Finally, the impact of the developed CH PLIF technique is demonstrated in a highly turbulent, lean, partially premixed methane/air flame established on a co-axial jet flame burner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号