首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 751 毫秒
1.
Direct numerical simulations with a C3-chemistry model have been performed to investigate the transient behavior and internal structure of flames propagating in an axisymmetric fuel jet of methane, ethane, ethylene, acetylene, or propane in normal earth gravity (1g) and zero gravity (0g). The fuel issued from a 3-mm-i.d. tube into quasi-quiescent air for a fixed mixing time of 0.3 s before it was ignited along the centerline where the fuel–air mixture was at stoichiometry. The edge of the flame formed a vigorously burning peak reactivity spot, i.e., reaction kernel, and propagated through a flammable mixture layer, leaving behind a trailing diffusion flame. The reaction kernel broadened laterally across the flammable mixture layer and possessed characteristics of premixed flames in the direction of propagation and unique flame structure in the transverse direction. The reaction kernel grew wings on both fuel and air sides to form a triple-flame-like structure, particularly for ethylene and acetylene, whereas for alkanes, the fuel-rich wing tended to merge with the main diffusion flame zone, particularly methane. The topology of edge diffusion flames depend on the properties of fuels, particularly the rich flammability limit, and the mechanistic oxidation pathways. The transit velocity of edge diffusion flames, determined from a time series of calculated temperature field, equaled to the measured laminar flame speed of the stoichiometric fuel–air mixtures, available in the literature, independent of the gravity level.  相似文献   

2.
Laminar flame speeds of mixtures of air with n-C14H30, n-C16H34, a petroleum-derived JP-5 jet fuel, a camelina-derived hydrotreated renewable JP-5 jet fuel, a petroleum-derived F-76 diesel fuel, and an algae-derived hydrotreated renewable F-76 diesel fuel, were measured in the counterflow configuration at atmospheric pressure and elevated unburned mixture temperatures. Digital particle image velocimetry was used to measure the axial flow velocities along the stagnation streamline. The experiments for n-C14H30/air and n-C16H34/air mixtures were modeled using recently developed kinetic models, and the experimental data were predicted satisfactorily. Both experiments and simulations revealed that the laminar flame speeds of n-C14H30/air and n-C16H34/air mixtures are very close to each other, as expected. On the other hand, the laminar flame speeds for the four practical fuels were found to be lower than n-C14H30 and n-C16H34, due to the presence of aromatics and branched hydrocarbons. Similarly, the laminar flame speeds for the alternative fuels were found to be higher than the petroleum-derived ones, again due to the presence of aromatic compounds in the latter. Further insight into the effects of kinetics and molecular transport was obtained through sensitivity analysis.  相似文献   

3.
In a continuation of the study of the mobility of fluids adsorbed in nanoporous materials, molecular dynamics simulations are used to investigate the behaviour of polyatomic ethane molecules adsorbed in AlPO4-5. The current work is based on the use of the united atom approach as a better model than the single-centre ethane used to date. Ethane molecules are modelled as rigid diatoms, and as a result the molecules have more degrees of freedom in the form of the rotational components that are absent in the single-centre ethane model. This represents a more sophisticated model for ethane and is used in the simulations to test earlier findings. Simulations with binary mixtures of methane and ethane also have been conducted with three mixture compositions. The transition from ordinary diffusion to single-file motion for a finite residence time is found to occur at a methyl group diameter of 4.75 Å. This is identical to the ethane diameter in the earlier study. Thus, only the minimum dimension determines the transition size. Also it is shown that the diatomic molecules undergo free rotation within the channel even when they are in the single-file mode of motion. In the case of binary mixtures, the methane molecules still undergo ordinary diffusion. Ethane molecules exhibit single-file motion at a methyl group diameter of 4.75 Å. The diffusion coefficient of methane decreases with increasing ethane size, while the trends in the single-file mobility of ethane as a function of methyl group diameter are nonlinear.  相似文献   

4.
In a silent electrical discharge of barrier type operated at 50 Hz, 10 resp. 20 kV alternating voltages and pressures of 3.32–9.96 × 104 Pa methane was plasmachemically converted to simple hydrocarbons. Ethane and propane were identified as main gaseous products, whereas butane, acetylene, ethylene and propylene occurred in distinct lower concentrations. The decay of methane in dependence on discharge time corresponds up to 1000 s strongly to an exponential function. The formation of alkanes especially ethane follows according to the scheme of a successive reaction; it can be well described kinetically by a 1st order rate equation.  相似文献   

5.
The results of detailed kinetic simulations of the formation of soot particles in the pyrolysis of n-hexane–argon mixtures and in the oxidation of fuel-rich (φ = 5) n-heptane–oxygen–argon mixtures behind reflected shock waves at pressures of 20–100 bar and a constant concentration of carbon atoms or a constant fraction of argon in the initial mixture within the framework of a modified reaction mechanism are reported. The choice of n-hexane and n-heptane for examining the effect of pressure on the process of soot formation was motivated by the availability for these hydrocarbons of experimental measurements in reflected shock waves at high pressures (up to ~100 bar). The temperature dependences of the yield of soot particles formed in the pyrolysis of n-hexane are found to be very weakly dependent on pressure and slightly shifting to lower temperatures with increasing pressure. In general, pressure produces a very weak effect on the soot formation in the pyrolysis of n-hexane. The effect of pressure and concentration of carbon atoms in the initial mixture on the process of soot formation during the oxidation of fuel-rich n-heptane mixtures behind reflected shock waves is studied. The results of our kinetic simulations show that, for both the pyrolysis of n-hexane and the oxidation of fuel-rich n-heptane–oxygen mixtures, the influence of pressure on the process of soot formation is negligible. By contrast, the concentration of carbon atoms in the initial reaction mixture produces a much more pronounced effect.  相似文献   

6.
The present paper continues the presentation of the results of studies started in [1]. The referred paper reports the development of the optical method for component analysis of natural gas mixtures with different compositions, allowing conducting measurements in real time. The method is based on the measurement of the absorption coefficients for the analyzed gas mixture at several wavelengths within the infrared region of the spectrum (7?C14 ??m), with the selected number and values of wavelengths depending on the category of the gas mixture. The resulting accuracy of the determination of the main components of gas mixtures including methane, ethane, propane, butane, pentane and carbon dioxide is sufficient for the use of the developed method for the monitoring of the component composition of natural gas in pipelines.  相似文献   

7.
For the first time, atmospheric-pressure low-temperature plasma treatment of pyrolysis fuel oil (PFO) was investigated in dielectric barrier discharge (DBD) plasma torch reactor. Main parameters including working gas flow rate and Ar/CH4 ratio along with the effects of separate Ar/C2H6 on the cracking of PFO were studied. By increasing the flow of argon and methane, the production rate of hydrocarbons containing ethane, ethylene, acetylene, propane, propylene, C4, and C5 increased from 1.72 to 10.48 ml/min for 4000 ml/min argon plus 400 ml/min methane as the working gas. In this case, the production rate of hydrogen increases from 10.58 to 56.86. The production rate of hydrocarbons increased from 3.53 to 13.5 ml/min by decreasing Ar/CH4 ratio from 40 to 5.6. By changing the type of working gas from methane to ethane, the production of hydrocarbons considerably increased from 6.47 to 17.75 ml/min.  相似文献   

8.
The properties of methane + ethane and methane + propane hydrates of cubic structures sI and sII are theoretically investigated. It is shown that the composition of the formed binary hydrate strongly depends on the percentage of a heavier guest in gas phase. For instance, for a 1% molar ethane concentration in gas phase, even at a low pressure, ethane occupies 60% large cavities in the hydrate sII, and as the pressure grows to 100 atm, it occupies 80% large cavities at a low temperature. The tendency remains the same at a temperature of higher than the ice melting point, but the methane concentration in the hydrate decreases to 30%. In the structure sI, the influence of the component composition of the gas mixture on that of the formed hydrate is less evident. However, in this case, calculation showed also that for a 1% molar ethane concentration in gas phase, ethane molecules occupy from 8 to 10% large hydrate cavities, depending on the pressure. This work is concerned with modeling phase transitions between cubic structures sI and sII of methane + ethane binary hydrates in view of incomplete occupation of cavities in the hydrate by guest molecules. For an ethane concentration under 2% in the gas mixture, the structure sII becomes more thermodynamically stable than the structure sI. However, as the ethane concentration grows to 20% in the equilibrium ice-gas-hydrate and to 40% in the equilibrium water-gas-hydrate, the structure sI becomes more thermodynamically stable. Hence, for low ethane concentrations in a gas mixture, the structure sI can be formed only as a metastable phase. Phase equilibria of methane hydrate sI and mixed methane + propane hydrate sII are considered, depending on the gas phase composition. Similar results are obtained for this equilibrium; this can evidence simultaneous formation of hydrates sI and sII at low propane concentrations.  相似文献   

9.
以甲烷、乙烯、氢气混合扩散火焰碳烟为研究对象,采用激光共聚焦拉曼光谱(Raman)和傅里叶红外光谱(FTIR)研究了不同掺甲烷比例下乙烯、氢气混合火焰碳烟有序度及官能团的分布特性,分析了碳烟石墨化和官能团分布,揭示了掺甲烷对乙烯/氢气(氢气比例30%)层流扩散火焰的碳烟生成影响规律。Raman研究表明在甲烷掺混比为3%和7%时,在火焰高度低于4cm位置生成的碳烟有序程度显著降低,表明在此区域存在明显的碳烟生成协同效应;甲烷掺混比增大超过10%时,协同效应基本消失,碳烟有序度上升。FTIR研究表明掺混甲烷对碳烟官能团组成影响明显。掺混甲烷后脂肪族官能团相对含量整体提高。随着甲烷掺杂比的增大,CH2相对含量增大到一峰值后减小。碳烟中芳香族官能团含量随着火焰高度的上升含量下降明显。掺混3%和7%甲烷,芳香族官能团在2和3 cm火焰高度时,芳香族官能团的含量明显上升。掺混甲烷比高于10%时,芳香族官能团的含量则有所降低。表明少量甲烷掺混使得CH3和C3H3生成有了新的途径,CH3和C3H3增加,而C2H4和C2H2减少不明显,从而促进了多环芳香烃(PAHs)的生成。继续增加甲烷因为稀释作用会抑制C2H2生成从而减少PAHs的生成,芳香族相对含量降低,因而降低了碳烟的生成。研究揭示了甲烷对乙烯/氢气层流扩散火焰中碳烟形成的相互作用:在低甲烷掺混比时存在协同效应促进碳烟生成,而在高甲烷掺混比时协同效应消失。  相似文献   

10.
The structure of axisymmetric laminar jet diffusion flames of ethane, ethylene, acetylene, and propane in quasi-quiescent air has been studied numerically in normal earth gravity (1g) and zero gravity (0g). The time-dependent full Navier–Stokes equations with buoyancy were solved using an implicit, third-order accurate numerical scheme, including a C3-chemistry model and an optically thin-media radiation model for heat losses. Observations of the flames were also made at the NASA Glenn 2.2-Second Drop Tower. For all cases of the fuels and gravity levels investigated, a peak reactivity spot, i.e., reaction kernel, was formed in the flame base, thereby holding a trailing diffusion flame. The location of the reaction kernel with respect to the burner rim depended inversely on the reaction-kernel reactivity or velocity. In the C2 and C3 hydrocarbon flames, the H2–O2 chain reactions were important at the reaction kernel, yet the CH3 + O → CH2O + H reaction, a dominant contributor to the heat-release rate in methane flames studied previously, did not outweigh other exothermic reactions. Instead of the C1-route oxidation pathway in methane flames, the C2 and C3 hydrocarbon fuels dehydrogenated on the fuel side and acetylene was a major hydrocarbon fragment burning at the reaction kernel. The reaction-kernel correlations between the reactivity (the heat-release or oxygen-consumption rate) and the velocity, obtained previously for methane, were developed further for various fuels in more universal forms using variables related to local Damköhler numbers and Peclet numbers.  相似文献   

11.
Russian Physics Journal - The possibility of measuring the concentration of alkane molecules – methane, ethane, propane, butane, pentane, and hexane – at the maximum permissible...  相似文献   

12.
Grand canonical histogram-reweighting Monte Carlo simulations were used to obtain the phase behaviour of several binary mixtures. The main goal of this work was to test the predictive capabilities of recently developed intermolecular potential models that accurately reproduce the phase behaviour of pure components. These united-atom potentials utilize the exponential-6 functional form for repulsive and dispersion interactions and fixed point charges for electrostatic interactions. The mixtures studied were n-pentane—methane, ethane—CO2, propane—CO2, n-pentane-CO2, H2O-ethane, CH3OH-n-hexane and CH3OH-CO2. The conventional Lorentz-Berthelot combining rules, as well as a set of combining rules due to Kong (1973, J. chem. Phys., 59, 2464) were used to obtain unlike-pair potential parameters. The Lorentz—Berthelot rules generally result in more attractive unlike-pair interactions than the Kong rules. For the n-alkane—CO2 systems, predicted phase diagrams are in excellent agreement with experiment when the Kong combining rules are used. For mixtures with CH3OH and H2O, the Lorentz—Berthelot rules yield better agreement with experiment than the Kong rules, but statistically significant differences remain. Our results suggest that relatively simple intermolecular potential models can be used to predict the phase behaviour of broad classes of binary systems. For mixtures with large differences in polar character of the components, however, present models do not predict the phase behaviour in quantitative agreement with experiment. New models that include higher order interactions such as polarizability may be suitable for this purpose, a hypothesis that will need to be tested in the future.  相似文献   

13.
Dielectric relaxation and dipole moment of binary mixtures of homologous series of mono alkyl ethers of ethylene glycol and of diethylene glycol, i.e., mono methyl, mono ethyl and mono butyl ethers of ethylene glycol (ROCH2CH2OH) and mono methyl, mono ethyl and mono butyl ethers of diethylene glycol (ROCH2CH2OCH2CH2OH) with ethyl alcohol (C2H5OH) of different concentrations were studied in dilute solutions of benzene, dioxane and carbon tetrachloride at 35 °C. Permittivity (ε′) and loss (ε″) at 10.1 GHz, static dielectric constant εo at 1 MHz and high frequency limiting dielectric constant ε = nD2 at optical frequency of these molecules and their binary mixtures at different concentration were measured in dilute solutions of non-polar solvents. The average relaxation time τo, relaxation times corresponding to overall molecular reorientation τ1 and group rotations τ2 were determined using Higasi's single frequency measurement equations for dilute solutions. The evaluated values of relaxation times and free energy of activation ΔF were used to explore the solvent effect on molecular dynamics of these polar binary systems in non-polar solvents. The excess inverse relaxation time and excess free energy of activation were determined to confirm the existence of hydrogen-bonded heterogeneous cooperative domains of the ethers and alcohol molecules at different concentration their binary mixtures in non-polar solvents. The dipole moment of the binary mixtures was evaluated using Higasi's and Guggenheim's equation for dilute solutions. The evaluated values of dipole moments and computed dipole moment values using a simple mixing equation of the polar molecules binary mixture were used to explore the effect of non-polar solvent environment on heterogeneous molecular interactions between ethers and alcohol molecules. The effect of number of carbon atoms in the molecular structure of these homologous series molecules was also considered for the interpretation of various evaluated dielectric parameters.  相似文献   

14.
Detonation front structure and the competition for radicals   总被引:1,自引:0,他引:1  
We examine the role of competition for radical species in determining detonation front structure for hydrogen and selected hydrocarbon fuels in air and oxygen. Numerical simulations and detailed reaction mechanisms are used to characterize the reaction zone length, shape, and sensitivity to temperature variation. We find that the effect of the competition for radicals on the energy release rate characteristics varies significantly for the chosen mixtures. Hydrogen exhibits a strong effect while in methane and ethane mixtures the effect is absent. Other hydrocarbons including acetylene, ethylene, and propane fall between these extreme cases. This competition is manifested by a peak in effective activation energy associated with a shift in the dominant reaction pathway in the initial portion of the reaction zone. The peak of the effective activation energy is centered on the extended second explosion limit. A five-step, four species reaction model of this competition process has been developed and calibrated against numerical simulations with detailed chemistry for hydrogen. The model includes a notional radical species and reactive intermediate in addition to reactants and products. The radical species undergoes chain-branching and there is a competing pathway through the reactive intermediate that is mediated by a three-body reaction followed by decomposition of the intermediate back to the radical species. We have used this model in two-dimensional unsteady simulations of detonation propagation to examine the qualitative differences in the cellular instability of detonation fronts corresponding to various degrees of competition between the chain-branching and reactive intermediate production. As the post-shock state approaches the region of competition between the radical and reactive intermediate, the detonation front becomes irregular and pockets of the reactive intermediate appear behind the front, but the detonation continues to propagate.  相似文献   

15.
An optical method is developed for the real-time component analysis of natural gas mixtures. The method is based on the measurement of the absorption coefficients of the gas mixture at several wavelengths in the IR spectral range (7–14 μm). The resulting accuracy of the measurements of the methane, ethane, and propane contents in gas mixtures is sufficient for the monitoring of the component composition of natural gas in pipelines.  相似文献   

16.
Results are presented from studies of the electric and emission parameters of transverse volume discharges in neon-sulfur-hexafluoride-propane mixtures at a total pressure of 3–12 kPa. The spatial characteristics of a transverse volume discharge, the plasma radiation spectra in the 130- to 550-nm wavelength range, the waveforms of the discharge voltage and current, and the yield of carbonic products of propane decomposition are investigated at different pressures and different composition of the Ne-SF6-C6H14 mixture.  相似文献   

17.
18.
Laminar flame speeds of premixed jet fuel/air with the addition of hydrogen, methane and ethylene are measured in a constant-volume bomb at an initial temperature of 420 K, initial pressure of 3 atm, equivalence ratios of 0.6–1.5 and gas mass fractions of 0–50%. The experimental results show that the addition of hydrogen and ethylene can significantly improve the laminar flame speed of the liquid jet fuel, while the addition of methane shows a weak inhibitory effect, and these effects are relatively remarkable on the fuel-rich conditions. The laminar flame speed of the dual fuels/air is linearly dependent on the additional gas mass fraction. A kinetic analysis indicates that the gas addition causes both thermodynamic and chemical kinetic effects on the laminar flame speed of the dual fuels/air. The adiabatic temperature increases and decreases with the addition of hydrogen/ethylene and methane, respectively. A sensitivity analysis shows that the reactions concerning to the H, CH3 and C2H3 radicals become significant with the addition of hydrogen, methane and ethylene, respectively, and that the different values of the rate of product (ROP) of these species via the critical reactions lead to a different promotional or inhibitory effect on the fuel-rich and fuel-lean conditions.  相似文献   

19.
Cary L. Pint 《Surface science》2006,600(4):921-932
The melting transition in solid monolayers of a series of short-chained n-alkanes, n-octane (n-C8H18), n-decane (n-C10H22), and n-dodecane (n-C12H26) physisorbed onto the graphite basal plane are studied through use of molecular dynamics simulations. Utilizing previous experimental observations of the solid phase behavior of these monolayers, this study investigates the temperature dependence of the phases and phase transitions in these three monolayers during the solid-fluid phase transition, and compares the observed melting behavior to previous studies of hexane and butane monolayers. In particular, this study seems to indicate a greater dependence of the melting transition on the formation of gauche defects in the alkyl chains as the chain length is increased. In light of the previously proposed “footprint reduction” mechanism and variations where the formation of gauche defects are energetically negated, simulations seem to suggest that decane and dodecane monolayers are generally equally as dependent upon the formation of gauche defects for the melting transition to take place, whereas octane monolayers seem to have less dependence, but follow a trend that is established in previous studies of melting in butane and hexane monolayers. Also, the phase transition from a solid herringbone phase into an orientationally ordered “intermediate” phase is found to exhibit some differences as compared to a recent study of hexane monolayers, which may be interpreted as originating from the greater influence of gauche defects. Comparison to experimental melting temperatures is provided where possible, and applications involving thin film manipulation and lubrication is discussed.  相似文献   

20.
Contact angle measurements on poly(tetrafluoroethylene) (PTFE) surface were carried out for the systems containing ternary mixtures of cetyltrimethylammonium bromide (CTAB) and p-(1,1,3,3-tetramethylbutyl)phenoxypoly(ethylene glycols), Triton X-100 (TX100) and Triton X-165 (TX165). The aqueous solution of ternary surfactant mixtures were prepared by adding the third surfactant to the binary mixture of the surfactants where the synergetic effect in the reduction of the surface tension of water was determined, to compare the influence of the third surfactants on the values of surface tension of this binary mixture and the values of the contact angle on PTFE. The obtained results and calculations indicate that the ternary mixtures of CTAB + TX165 (αCTAB = 0.2, γLV = 60 and 50 mN/m) + TX100 (C = 10−8 to 10−2 M) have the biggest efficiency of the reduction of contact angle of water on PTFE in comparison to aqueous solutions of the single surfactants and their binary and ternary mixtures. Also in the case of all studied ternary mixtures of surfactants at concentrations of the bulk phase corresponding to unsaturated monolayer at water-air interface the adsorption of surfactants at PTFE-water interface is different than that at water-air interface, but is the same at concentrations near the critical micelle concentration (CMC). Thus the linear dependences between γLV cos θ − γLV and cos θ − 1/γLV, in the range of concentration studied for all systems confirm the same adsorption at two interfaces only at C near the CMC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号