首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oscillating lifted flame in a laminar nonpremixed nitrogen-diluted fuel jet is known to be a result of buoyancy, though the detailed physical mechanism of the initiation has not yet been properly addressed. We designed a systematic experiment to test the hypothesis that the oscillation is driven by competition between the positive buoyancy of flame and the negative buoyancy of a fuel stream heavier than the ambient air. The positive buoyancy was examined with various flame temperatures by changing fuel mole fraction, and the negative buoyancy was investigated with various fuel densities. The density of the coflow was also varied within a certain range by adding either helium or carbon dioxide to air, to study how it affected the positive and negative buoyancies at the same time. As a result, we found that the range of oscillation was well-correlated with the positive and the negative buoyancies; the former stabilized the oscillation while the latter triggered instability and became a source of the oscillation. Further measurements of the flow fields and OH radicals evidenced the important role of the negative buoyancy on the oscillation, detailing a periodic variation in the unburned flow velocity that affected the displacement of the flame.  相似文献   

2.
The effects of electric fields on the reattachment of lifted flames have been investigated experimentally in laminar coflow jets with propane fuel by applying high voltages to the fuel nozzle. In case of AC, the frequency has also been varied. Results showed that reattachment occurred at higher jet velocity when applying the AC voltages, thus the stabilization limit of attached flames was extended by the AC electric field. Higher voltage and lower frequency of the AC were found to be more effective. On the contrary, the effect of DC was found to be minimal. To understand the early onset of the reattachment with the AC, occurring at higher jet velocity, the influence of AC electric fields on the propagation speed of tribrachial flame edge was investigated during the transient reattachment processes. The propagation speed increased reasonably linearly with the applied AC voltage and decreased inversely to the distance between the flame edge and the nozzle electrode. Consequently, the enhancement in the propagation speed of tribrachial flame edge was correlated well with the electric field intensity, defined as the applied AC voltage divided by the distance.  相似文献   

3.
The stabilization mechanism of lifted flames in the near field of coflow jets has been investigated experimentally and numerically for methane fuel diluted with nitrogen. The lifted flames were observed only in the near field of coflow jets until blowout occurred in the normal gravity condition. To elucidate the stabilization mechanism for the stationary lifted flames of methane having the Schmidt number smaller than unity, the behavior of the flame in the buoyancy-free condition, and unsteady propagation characteristics after ignition were investigated numerically at various conditions of jet velocity. It has been found that buoyancy plays an important role for flame stabilization of lifted flames under normal gravity, such that the flame becomes attached to the nozzle in microgravity. The stabilization mechanism is found to be due to the variation of the propagation speed of the lifted flame edge with axial distance from the nozzle in the near field of the coflow as compared to the local flow velocity variation at the edge.  相似文献   

4.
The effect of velocity gradient on the propagation speed of tribrachial flame edge has been investigated experimentally in laminar coflow jets for propane fuel. It was observed that the propagation speed of tribrachial flame showed appreciable deviations at various jet velocities in high mixture fraction gradient regime. From the similarity solutions, it was demonstrated that the velocity gradient varied significantly during the flame propagation. To examine the effect of velocity gradient, detail structures of tribrachial flames were investigated from OH LIF images and Abel transformed images of flame luminosity. It was revealed that the tribrachial point was located on the slanted surface of the premixed wing, and this slanted angle was correlated with the velocity gradient along the stoichiometric contour. The temperature field was visualized qualitatively by the Rayleigh scattering image. The propagation speed of tribrachial flame was corrected by considering the direction of flame propagation with the slanted angle and effective heat conduction to upstream. The corrected propagation speed of tribrachial flame was correlated well. Thus, the mixture fraction gradient together with the velocity gradient affected the propagation speed.  相似文献   

5.
6.
We investigate the influence of inflow velocity (Vin) and scalar dissipation rate (χ) on the flame structure and stabilisation mechanism of steady, laminar partially premixed n-dodecane edge flames stabilised on a convective mixing layer. Numerical simulations were performed for three different χ profiles and several Vin (Vin = 0.2 to 2.5m/s). The ambient thermochemical conditions were the same as the Engine Combustion Network’s (ECN) Spray A flame, which in turn represents conditions in a typical heavy duty diesel engine. The results of a combustion mode analysis of the simulations indicate that the flame structure and stabilisation mechanism depend on Vin and χ. For low Vin the flame is attached. Increasing Vin causes the high-temperature chemistry (HTC) flame to lift-off, while the low-temperature chemistry (LTC) flame is still attached. A unique speed SR associated with this transition is defined as the velocity at which the lifted height has the maximum sensitivity to changes in Vin. This transition velocity is negatively correlated with χ. Near Vin=SR a tetrabrachial flame structure is observed consisting of a triple flame, stabilised by flame propagation into the products of an upstream LTC branch. Further increasing the inlet velocity changes the flame structure to a pentabrachial one, where an additional HTC ignition branch is observed upstream of the triple flame and ignition begins to contribute to the flame stabilisation. At large Vin, the LTC is eventually lifted, and the speed at which this transition occurs is insensitive to χ. Further increasing Vin increases the contribution of ignition to flame stabilisation until the flame is completely ignition stabilised. Flow divergence caused by the LTC branch reduces the χ at the HTC branches making the HTC more resilient to χ. The results are discussed in the context of identification of possible stabilisation modes in turbulent flames.  相似文献   

7.
Simulations of H2 air lifted jet flames are presented, obtained in terms of two-dimensional, first-order conditional moment closure (CMC). The unsteady CMC equation with detailed chemistry is solved without the need for operator splitting, while the accompanying flow field is determined using commercial CFD software employing a kε turbulence model. Computed lift-off heights and Favre-averaged species mole fractions are found to be very close to values obtained experimentally for a wide range of jet velocities and fuel–air mixtures. Simulations for which the initial condition is an attached flame and the jet velocity gradually increased do not result in lift-off, a result fully consistent with experimental observation and capturing the hysteresis behaviour of lifted flames. The stabilisation mechanism is explored by quantifying the balance of terms comprising the CMC in the lift-off region. In line with experimental data, it is found that the scalar dissipation rate at the stabilisation height is well below the extinction value, and that axial transport and molecular diffusion play a major role. The radial components of spatial convection and diffusion are always small, fully justifying the alternative approach of employing a cross-stream averaged CMC.  相似文献   

8.
Lifted turbulent jet diffusion flame is simulated using Conditional Moment Closure (CMC). Specifically, the burner configuration of Cabra et al. [R. Cabra, T. Myhrvold, J.Y. Chen, R.W. Dibble, A.N. Karpetis, R.S. Barlow, Proc. Combust. Inst. 29 (2002) 1881–1887] is chosen to investigate H2/N2 jet flame supported by a vitiated coflow of products of lean H2/air combustion. A 2D, axisymmetric flow-model fully coupled with the scalar fields, is employed. A detailed chemical kinetic scheme is included, and first order CMC is applied. Simulations are carried out for different jet velocities and coflow temperatures (Tc). The predicted liftoff generally agrees with experimental data, as well as joint-PDF results. Profiles of mean scalar fluxes in the mixture fraction space, for Tc=1025 and 1080 K reveal that (1) Inside the flame zone, the chemical term balances the molecular diffusion term, and hence the structure is of a diffusion flamelet for both cases. (2) In the pre-flame zone, the structure depends on the coflow temperature: for the 1025 K case, the chemical term being small, the advective term balances the axial turbulent diffusion term. However, for the 1080 K case, the chemical term is large and balances the advective term, the axial turbulent diffusion term being small. It is concluded that, lift-off is controlled (a) by turbulent premixed flame propagation for low coflow temperature while (b) by autoignition for high coflow temperature.  相似文献   

9.

This paper presents a numerical study of auto-ignition in simple jets of a hydrogen–nitrogen mixture issuing into a vitiated co-flowing stream. The stabilization region of these flames is complex and, depending on the flow conditions, may undergo a transition from auto-ignition to premixed flame propagation. The objective of this paper is to develop numerical indicators for identifying such behavior, first in well-known simple test cases and then in the lifted turbulent flames. The calculations employ a composition probability density function (PDF) approach coupled to the commercial CFD code, FLUENT. The in-situ-adaptive tabulation (ISAT) method is used to implement detailed chemical kinetics. A simple k–ε turbulence model is used for turbulence along with a low Reynolds number model close to the solid walls of the fuel pipe.

The first indicator is based on an analysis of the species transport with respect to the budget of convection, diffusion and chemical reaction terms. This is a powerful tool for investigating aspects of turbulent combustion that would otherwise be prohibitive or impossible to examine experimentally. Reaction balanced by convection with minimal axial diffusion is taken as an indicator of auto-ignition while a diffusive–reactive balance, preceded by a convective–diffusive balanced pre-heat zone, is representative of a premixed flame. The second indicator is the relative location of the onset of creation of certain radical species such as HO2 ahead of the flame zone. The buildup of HO2 prior to the creation of H, O and OH is taken as another indicator of autoignition.

The paper first confirms the relevance of these indicators with respect to two simple test cases representing clear auto-ignition and premixed flame propagation. Three turbulent lifted flames are then investigated and the presence of auto-ignition is identified. These numerical tools are essential in providing valuable insights into the stabilization behaviour of these flames, and the demarcation between processes of auto-ignition and premixed flame propagation.  相似文献   

10.
Numerical simulations of laminar coflow methane/air diffusion flames at atmospheric pressure and different gravity levels were conducted to gain a better understanding of the effects of gravity on soot formation by using relatively detailed gas-phase chemistry and complex thermal and transport properties coupled with a semi-empirical two-equation soot model. Thermal radiation was calculated using the discrete-ordinates method coupled with a non-grey model for the radiative properties of CO, CO2, H2O, and soot. Calculations were conducted for three coflow air velocities of 77.6, 30, and 5 cm/s to investigate how the coflowing air velocity affects the flame structure and soot formation at different levels of gravity. The coflow air velocity has a rather significant effect on the streamwise velocity and the fluid parcel residence time, especially at reduced gravity levels. The flame height and the visible flame height in general increase with decreasing the gravity level. The peak flame temperature decreases with decreasing either the coflow air stream velocity or the gravity level. The peak soot volume fraction of the flame at microgravity can either be greater or less than that of its normal gravity counterpart, depending on the coflow air velocity. At sufficiently high coflow air velocity, the peak soot volume fraction increases with decreasing the gravity level. When the coflow air velocity is low enough, soot formation is greatly suppressed at microgravity and extinguishment occurs in the upper portion of the flame with soot emission from the tip of the flame owing to incomplete oxidation. The numerical results provide further insights into the intimate coupling between flame size, residence time, thermal radiation, and soot formation at reduced gravity level. The importance of thermal radiation heat transfer and coflow air velocity to the flame structure and soot formation at microgravity is demonstrated for the first time.  相似文献   

11.
This study focuses on the modelling of turbulent lifted jet flames using flamelets and a presumed Probability Density Function (PDF) approach with interest in both flame lift-off height and flame brush structure. First, flamelet models used to capture contributions from premixed and non-premixed modes of the partially premixed combustion in the lifted jet flame are assessed using a Direct Numerical Simulation (DNS) data for a turbulent lifted hydrogen jet flame. The joint PDFs of mixture fraction Z and progress variable c, including their statistical correlation, are obtained using a copula method, which is also validated using the DNS data. The statistically independent PDFs are found to be generally inadequate to represent the joint PDFs from the DNS data. The effects of Zc correlation and the contribution from the non-premixed combustion mode on the flame lift-off height are studied systematically by including one effect at a time in the simulations used for a posteriori validation. A simple model including the effects of chemical kinetics and scalar dissipation rate is suggested and used for non-premixed combustion contributions. The results clearly show that both Zc correlation and non-premixed combustion effects are required in the premixed flamelets approach to get good agreement with the measured flame lift-off heights as a function of jet velocity. The flame brush structure reported in earlier experimental studies is also captured reasonably well for various axial positions. It seems that flame stabilisation is influenced by both premixed and non-premixed combustion modes, and their mutual influences.  相似文献   

12.
Three-dimensional (3D) unsteady Reynolds-averaged Navier–Stokes simulations of a spark-ignited turbulent methane/air jet flame evolving from ignition to stabilisation are conducted for different jet velocities. A partially premixed combustion model is used involving a correlated joint probability density function and both premixed and non-premixed combustion mode contributions. The 3D simulation results for the temporal evolution of the flame's leading edge are compared with previous two-dimensional (2D) results and experimental data. The comparison shows that the final stabilised flame lift-off height is well predicted by both 2D and 3D computations. However, the transient evolution of the flame's leading edge computed from 3D simulation agrees reasonably well with experiment, whereas evident discrepancies were found in the previous 2D study. This difference suggests that the third physical dimension plays an important role during the flame transient evolution process. The flame brush's leading edge displacement speed resulting from reaction, normal and tangential diffusion processes are studied at different typical stages after ignition in order to understand the effect of the third physical dimension further. Substantial differences are found for the reaction and normal diffusion components between 2D and 3D simulations especially in the initial propagation stage. The evolution of reaction progress variable scalar gradients and its interaction with the flow and mixing field in the 3D physical space have an important effect on the flame's leading edge propagation.  相似文献   

13.
Direct numerical simulations with a C3-chemistry model have been performed to investigate the transient behavior and internal structure of flames propagating in an axisymmetric fuel jet of methane, ethane, ethylene, acetylene, or propane in normal earth gravity (1g) and zero gravity (0g). The fuel issued from a 3-mm-i.d. tube into quasi-quiescent air for a fixed mixing time of 0.3 s before it was ignited along the centerline where the fuel–air mixture was at stoichiometry. The edge of the flame formed a vigorously burning peak reactivity spot, i.e., reaction kernel, and propagated through a flammable mixture layer, leaving behind a trailing diffusion flame. The reaction kernel broadened laterally across the flammable mixture layer and possessed characteristics of premixed flames in the direction of propagation and unique flame structure in the transverse direction. The reaction kernel grew wings on both fuel and air sides to form a triple-flame-like structure, particularly for ethylene and acetylene, whereas for alkanes, the fuel-rich wing tended to merge with the main diffusion flame zone, particularly methane. The topology of edge diffusion flames depend on the properties of fuels, particularly the rich flammability limit, and the mechanistic oxidation pathways. The transit velocity of edge diffusion flames, determined from a time series of calculated temperature field, equaled to the measured laminar flame speed of the stoichiometric fuel–air mixtures, available in the literature, independent of the gravity level.  相似文献   

14.
The outwardly propagating spherical flame (OPF) method is popularly used to measure the laminar flame speed (LFS). Recently, great efforts have been devoted to improving the accuracy of the LFS measurement from OPF. In the OPF method, several assumptions are made. For examples, the burned gas is assumed to be static and in chemical equilibrium. However, these assumptions may not be satisfied under certain conditions. Here we consider low-pressure and super-adiabatic propagating spherical flames, for which chemical non-equilibrium exists and the burned gas may not be static. The objective is to assess the chemical non-equilibrium effects on the accuracy of LFS measurement from the OPF method. Numerical simulations considering detailed chemistry and transport are conducted. Stoichiometric methane/air flames at sub-atmospheric pressures and methane/oxygen flames at different equivalence ratios are considered. At low pressures, broad heat release zone is observed and the burned gas cannot quickly reach the adiabatic flame temperature, indicating the existence of chemical non-equilibrium of burned gas. Positive flow in the burned gas is identified and it is shown to become stronger at lower initial pressure. Consequently, the LFS measurement from OPF at low pressures is not accurate if the burned gas is assumed to be static and at chemical equilibrium. For super-adiabatic spherical flames, the burned gas speed is found to be negative due to the local temperature overshoot at the flame front. Such negative speed of burned gas can also reduce the accuracy of LFS measurement. It is recommended that the direct method measuring both flame propagation speed and flow speed of unburned gas should be used to determine the LFS at low pressures or for mixtures with super-adiabatic flame temperature.  相似文献   

15.
The effects of flow compression and flame stretch on the accurate determination of laminar flame speeds at normal and elevated pressures using propagating spherical flames at constant pressure or constant volume are studied theoretically and numerically. The results show that both the compression-induced flow motion and flame stretch have significant impacts on the accuracy of flame speed determination. For the constant pressure method, a new method to obtain a compression-corrected flame speed (CCFS) for nearly constant pressure spherical bomb experiments is presented. Likewise, for the constant volume method, a technique to obtain a stretch-corrected flame speed (SCFS) at elevated pressures and temperatures is developed. The validity of theoretical results for both constant pressure and constant volume methods is demonstrated by numerical simulations using detailed chemistry for hydrogen/air, methane/air, and propane/air mixtures. It is shown that the present CCFS and SCFS methods not only improve the accuracy of the flame speed measurements significantly but also extend the parameter range of experimental conditions. The results can be used directly in experimental measurements of laminar flame speeds.  相似文献   

16.
The phenomenon of superadiabatic flame temperature (SAFT) was discovered and investigated in a low-pressure HN3/N2 flame using numerical modelling. A previously developed mechanism of chemical reactions in the HN3/N2 flame at the pressure 50 Torr and the initial temperature T0 = 296 K was revised. Rate constants of several important reactions involving HN3 (HN3 (+N2) = N2 + NH (+N2), R1; HN3 (+HN3) = N2 + NH (+HN3), R2; HN3 + H = N2 + NH2, R4; HN3 + N = N2 + NNH, R5; and HN3 + NH2 = NH3 + N3, R7) were calculated using quantum chemistry and reaction rate theories. Modified Arrhenius expressions for these reactions are provided for the 300–3500 K temperature range. Modelling of the flame structure and flame propagation velocity of the HN3/N2 flame at p = 50 Torr and T0 = 296 K was performed using the revised mechanism. The results demonstrate the presence of the SAFT phenomenon in the HN3/N2 flame. Analysis of the flame structure and the kinetic mechanism indicates that the cause of SAFT is in the kinetic mechanism: exothermic reactions of radicals with hydrogen atoms occur in the post flame zone, which results in the formation of super equilibrium H2 concentrations. The flame propagation velocity is largely determined by the second-order HN3 decomposition reaction and not by the reaction of HN3 with H, as was previously assumed. Calculation of the flame propagation velocity according to the Zeldovich-Frank-Kamenetsky theory with the decomposition reaction as a limiting stage yielded a value that agrees with that obtained in numerical modelling using the complete reaction mechanism.  相似文献   

17.
We conducted a numerical study on the fluid dynamic, thermal and chemical structures of laminar methane–air micro flames established under quiescent atmospheric conditions. The micro flame is defined as a flame on the order of one millimetre or less established at the exit of a vertically-aligned straight tube. The numerical model consists of convective–diffusive heat and mass transport with a one-step, irreversible, exothermic reaction with selected kinetics constants validated for near-extinction analyses. Calculations conducted under the burner rim temperature 300 K and the adiabatic burner wall showed that there is the minimum burner diameter for the micro flame to exist. The Damköhler number (the ratio of the diffusive transport time to the chemical time) was used to explain why a flame with a height of less than a few hundred microns is not able to exist under the adiabatic burner wall condition. We also conducted scaling analysis to explain the difference in extinction characteristics caused by different burner wall conditions. This study also discussed the difference in governing mechanisms between micro flames and microgravity flames, both of which exhibit similar spherical flame shape.  相似文献   

18.
A numerical study is conducted of methane–air coflow diffusion flames at microgravity (μg) and normal gravity (1g), and comparisons are made with experimental data in the literature. The model employed uses a detailed gas phase chemical kinetic mechanism that includes PAH formation and growth, and is coupled to a sectional soot particle dynamics model. The model is able to accurately predict the trends observed experimentally with reduction of gravity without any tuning of the model for different flames. The microgravity sooting flames were found to have lower temperatures and higher volume fraction than their normal gravity counterparts. In the absence of gravity, the flame radii increase due to elimination of buoyance forces and reduction of flow velocity, which is consistent with experimental observations. Soot formation along the wings is seen to be surface growth dominated, while PAH condensation plays a more major role on centreline soot formation. Surface growth and PAH growth increase in microgravity primarily due to increases in the residence time inside the flame. The rate of increase of surface growth is more significant compared to PAH growth, which causes soot distribution to shift from the centreline of the flame to the wings in microgravity.  相似文献   

19.
Laminar flame propagation is an important problem in combustion modelling for which great advances have been achieved both in its theoretical understanding and in the numerical solution of the governing equations in 2D and 3D. Most of these numerical simulations use finite difference techniques on simple geometries (channels, ducts, ...) with equispaced nodes. The objective of this work is to explore the applicability of the radial basis function generated finite difference (RBF-FD) method to laminar flame propagation modelling. This method is specially well suited for the solution of problems with complex geometries and irregular boundaries. Another important advantage is that the method is independent of the dimension of the problem and, therefore, it is very easy to apply in 3D problems with complex geometries. In this work we use the RBF-FD method to compute 2D and 3D numerical results that simulate premixed laminar flames with different Lewis numbers propagating in open ducts.  相似文献   

20.
A combined computational and experimental investigation that examines the relationship of soot formation and NO in coflow ethylene air diffusion flames is presented. While both NO and soot formation are often studied independently, there is a need to understand their coupled relationship as a function of system parameters such as fuel type, temperature and pressure. The temperature decrease due to radiative losses in systems in which significant soot is produced can affect flame length and other temperature-dependent processes such as the formation of NO. The results of a computational model that includes a sectional representation for soot formation with a radiation model are compared against laser-induced fluorescence measurements of NO. The sooting characteristics of these flames have been studied previously. Experimentally, a laser near 225.8 nm is used to excite the γ(0, 0) band in NO. Spectrally resolved fluorescence emission is imaged radially, for the (0, 0), (0, 1), (0, 2), (0, 3), and (0, 4) vibrational bands, at varying axial heights to create a two-dimensional image of NO fluorescence. A reverse quenching correction is applied to the computational results to determine an expected fluorescence signal for comparison with experimental results. Modeling results confirm that Fenimore NO is the dominant mechanism for NO production and suggest that for lightly sooting flames (peak soot volume fraction < 0.5 ppm), soot reduces only the Zeldovich NO formation (by a factor of two). For flames with increased soot levels (peak soot volume fraction ∼ 4 ppm), the model indicates not only that Zeldovich NO decreases by a factor of 2.5 through radiation loss, but that non-Zeldovich NO is reduced in the top center of the flame by about 30% through the oxidation of soot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号