首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental and numerical studies are carried out to construct surrogates that can reproduce selected aspects of combustion of gasoline in non premixed flows. Experiments are carried out employing the counterflow configuration. Critical conditions of extinction and autoignition are measured. The fuels tested are n-heptane, iso-octane, methylcyclohexane, toluene, three surrogates made up of these components, called surrogate A, surrogate B, and surrogate C, two commercial gasoline with octane numbers (ON) of 87 and 91, and two mixtures of the primary reference fuels, n-heptane and iso-octane, called PRF 87 and PRF 91. The combustion characteristics of the commercial gasolines, ON 87 and ON 91, are found to be nearly the same. Surrogate A and surrogate C are found to reproduce critical conditions of extinction and autoignition of gasoline: surrogate C is slightly better than surrogate A. Numerical calculations are carried out using a semi-detailed chemical-kinetic mechanism. The calculated values of the critical conditions of extinction and autoignition of the components of the surrogates agree well with experimental data. The octane numbers of the mixtures PRF 87 and PRF 91 are the same as those for the gasoline tested here. Experimental and numerical studies show that the critical conditions of extinction and autoignition for these fuels are not the same as those for gasoline. This confirms the need to include at least aromatic compounds in the surrogate mixtures. The present study shows that the semi-detailed chemical-kinetic mechanism developed here is able to predict key aspects of combustion of gasoline in non premixed flows, although further kinetic work is needed to improve the combustion chemistry of aromatic species, in particular toluene.  相似文献   

2.
The demand for petroleum-derived gasoline in the transportation sector is on the rise. For better knowledge of gasoline combustion in practical combustion systems, this study presents experimental measurements and numerical prediction of autoignition temperatures and extinction limits of six FACE (fuels for advanced combustion engines) gasoline fuels in counterflow flames. Extinction limits were measured at atmospheric pressures while the experiments for autoignition temperatures were carried out at atmospheric and high pressures. For atmospheric pressure experiment, the fuel stream consists of the pre-vaporized fuel diluted with nitrogen, while a condensed fuel configuration is used for ignition experiment at higher chamber pressures. The oxidizer stream is pure air. Autoignition temperatures of the tested fuels are nearly the same at atmospheric pressure, while a huge difference is observed as the pressure is increased. Unlike the ignition temperatures at atmospheric pressures, minor difference exists in the extinction limits of the tested fuels. Simulations were carried out using a recently developed gasoline surrogate model. Both multi-component and n-heptane/isooctane mixtures were used as surrogates for the simulations. Overall, the n-heptane/isooctane surrogate mixtures are consistently more reactive as compared the multi-component surrogate mixtures. Transport weighted enthalpy and radical index analysis was used to explain the differences in extinction strain rates for the various fuels.  相似文献   

3.
An experimental and computational investigation is carried out to characterize the influence of reactants on critical conditions for extinction and for autoignition of propane and n-heptane in nonpremixed counterflow configurations. Propane or vaporized n-heptane mixed with nitrogen is transported in one stream while the other stream is made up of air mixed with nitrogen. Measurements of the oxidizer stream temperature needed for autoignition are made at fixed values of the strain rate, either with the fuel mass fraction varied at a fixed oxygen mass fraction or with the oxygen mass fraction varied at a fixed fuel mass fraction. Extinction strain rates for propane are measured as a function of the oxygen mass fraction with room-temperature feed streams and the fuel mass fraction fixed and for n-heptane as a function of the fuel mass fraction with the oxygen mass fraction and feed-stream temperatures fixed. Predictions of critical conditions for extinction and autoignition are made employing detailed kinetic mechanisms. Predictions of critical conditions for extinction are in reasonable agreement with measurements, but there are significant discrepancies for autoignition. Measurements show that increasing the mass fraction of either fuel or oxygen increases the overall reactivity thereby reducing the autoignition temperature. The kinetic models predict the increase in reactivity of the mixing layer with increasing mass fraction of fuel but predict very little change in reactivity of the mixing layer with increasing mass fraction of oxygen, thus failing to predict the influence of oxygen on autoignition. It is concluded that there may exist kinetic pathways responsible for this disagreement that are yet to be discovered, and paths that fail to explain the results are identified.  相似文献   

4.
Experimental and kinetic modeling studies are carried out to characterize premixed combustion of jet fuels, their surrogates, and reference components in laminar nonuniform flows. In previous studies, it was established that the Aachen surrogate made up of 80 % n-decane and 20 % trimethylbenzene by weight, and surrogate C made up of 57 % n-dodecane, 21 % methylcyclohexane and 22 % o-xylene by weight, reproduce key aspects of combustion of jet fuels in laminar nonpremixed flows. Here, these surrogates and a jet fuel are tested in premixed, nonuniform flows. The counterflow configuration is employed, and critical conditions of extinction are measured. In addition, the reference components tested are n-heptane, n-decane, n-dodecane, methylcyclohexane, trimethylbenzene, and o-xylene. Measured critical conditions of extinction of the Aachen surrogate and surrogate C are compared with those for the jet fuel. In general the alkanes n-heptane, n-decane, and n-dodecane, and methylcyclohexane are found to be more reactive than the aromatics o-xylene and trimethylbenzene. Flame structure and critical conditions of extinction are predicted for the reference components and the surrogates using a semi-detailed kinetic model. The predicted values are compared with experimental data. Sensitivity analysis shows that the lower reactivity of the aromatic species arises from the formation of resonantly stabilized radicals. These radicals are found to have a scavenging effect. The present study on premixed flows together with previous studies on nonpremixed flows show that the Aachen surrogate and surrogate C reproduce many aspects of premixed and nonpremixed combustion of jet fuels.  相似文献   

5.
A surrogate fuel for kerosene   总被引:19,自引:0,他引:19  
Experimental and numerical studies are carried out to develop a surrogate that can reproduce selected aspects of combustion of kerosene. Jet fuels, in particular Jet-A1, Jet-A, and JP-8 are kerosene type fuels. Surrogate fuels are defined as mixtures of few hydrocarbon compounds with combustion characteristics similar to those of commercial fuels. A mixture of n-decane 80% and 1,2,4-trimethylbenzene 20% by weight, called the Aachen surrogate, is selected for consideration as a possible surrogate of kerosene. Experiments are carried out employing the counterflow configuration. The fuels tested are kerosene and the Aachen surrogate. Critical conditions of extinction, autoignition, and volume fraction of soot measured in laminar non premixed flows burning the Aachen surrogate are found to be similar to those in flames burning kerosene.A chemical-kinetic mechanism is developed to describe the combustion of the Aachen surrogate. This mechanism is assembled using previously developed chemical-kinetic mechanisms for the components: n-decane and 1,2,4-trimethylbenzene. Improvements are made to the previously developed chemical-kinetic mechanism for n-decane. The combined mechanisms are validated using experimental data obtained from shock tubes, rapid compression machines, jet stirred reactor, burner stabilized premixed flames, and a freely propagating premixed flame. Numerical calculations are performed using the chemical-kinetic mechanism for the Aachen surrogate. The calculated values of the critical conditions of autoignition and soot volume fraction agree well with experimental data. The present study shows that the chemical-kinetic mechanism for the Aachen surrogate can be employed to predict non premixed combustion of kerosene.  相似文献   

6.
Experimental and computational investigations are carried out to elucidate the fundamental mechanisms of autoignition of surrogates of jet-fuels at elevated pressures up to 6 bar. The jet-fuels tested are JP-8, Jet-A, and JP-5, and the surrogates tested are the Aachen Surrogate made up of 80 % n-decane and 20 % 1,3,5-trimethylbenzene by mass, Surrogate C made up of 60 % n-dodecane, 20 % methylcyclohexane and 20 % o-xylene by volume, and the 2nd generation Princeton Surrogate made up of 40.4 % n-dodecane, 29.5 % 2,2,4-trimethylpentane, 7.3 % 1,3,5-trimethylbenzene and 22.8 % n-propylbenzene by mole. Using the counterflow configuration, an axisymmetric flow of a gaseous oxidizer stream, made up of a mixture of oxygen and nitrogen, is directed over the surface of an evaporating pool of a liquid fuel. The experiments are conducted at a fixed value of mass fraction of oxygen in the oxidizer stream and at a fixed value of the strain rate. The temperature of the oxidizer stream at autoignition, Tig, is measured as a function of pressure, p. Experimental results show that the critical conditions, of autoignition of the surrogates are close to that of the jet-fuels. Overall the critical conditions of autoignition of Surrogate C agree best with those of the jet-fuels. Computations were performed using skeletal mechanisms constructed from a detailed mechanism. Predictions of the critical conditions of autoignition of the surrogates are found to agree well with measurements. Computations show that low-temperature chemistry plays a significant role in promoting autoignition for all surrogates. The low-temperature chemistry, of the component of the surrogate with the greatest volatility, was found to have the most influence on the critical conditions of autoignition.  相似文献   

7.
The influence of water vapor on critical conditions of extinction and autoignition of premixed and nonpremixed flames is investigated. The fuels tested are hydrogen (H2) and methane (CH4). Studies on premixed systems are carried out by injecting a premixed reactant stream made up of fuel, oxygen (O2), and nitrogen (N2) from one duct, and an inert-gas stream of N2 from the other duct. Critical conditions of extinction are measured for various amounts of water vapor added to the premixed reactant stream. The ratio of fuel to oxygen is maintained at a constant value, and the amounts of water vapor and nitrogen are so chosen that the adiabatic temperature remains the same. This ensures that the physical influence of water is the same for all cases. Therefore, changes in values for the critical conditions of extinction are attributed to the chemical influence of water vapor. Studies on nonpremixed systems are carried out by injecting a fuel stream made up of fuel and N2 from one duct ,and an oxidizer stream made up of O2 and N2 from the other duct. Critical conditions of extinction are measured with water vapor added to the oxidizer stream. The concentrations of reactants are so chosen that the adiabatic temperature and the flame position stay the same for all cases. Critical conditions of autoignition are measured by preheating the oxidizer stream of the nonpremixed system. Water vapor is added to the oxidizer stream. Numerical calculations are performed using a detailed chemical-kinetic mechanism and compared with measurements. Experimental and numerical studies show that addition of water makes the premixed and nonpremixed flames easier to extinguish and harder to ignite. The chemical influence of water is attributed to its enhanced chaperon efficiency in three body reactions.  相似文献   

8.
Surrogate fuels aim to reproduce real fuel combustion characteristics in order to enable predictive simulations and fuel/engine design. In this work, surrogate mixtures were formulated for three diesel fuels (Coryton Euro and Coryton US-2D certification grade and Saudi pump grade) and two jet fuels (POSF 4658 and POSF 4734) using the minimalist functional group (MFG) approach, a method recently developed and tested for gasoline fuels. The diesel and jet fuel surrogates were formulated by matching five important functional groups, while minimizing the surrogate components to two species. Another molecular parameter, called as branching index (BI), which denotes the degree of branching was also used as a matching criterion. The present works aims to test the ability of the MFG surrogate methodology for high molecular weight fuels (e.g., jet and diesel). 1H Nuclear Magnetic Resonance (NMR) spectroscopy was used to analyze the composition of the groups in diesel fuels, and those in jet fuels were evaluated using the molecular data obtained from published literature. The MFG surrogates were experimentally evaluated in an ignition quality tester (IQT), wherein ignition delay times (IDT) and derived cetane number (DCN) were measured. Physical properties, namely, average molecular weight (AMW) and density, and thermochemical properties, namely, heat of combustion and H/C ratio were also compared. The results show that the MFG surrogates were able to reproduce the combustion properties of the above fuels, and we demonstrate that fewer species in surrogates can be as effective as more complex surrogates. We conclude that the MFG approach can radically simplify the surrogate formulation process, significantly reduce the cost and time associated with the development of chemical kinetic models, and facilitate surrogate testing.  相似文献   

9.
The analysis and interpretation of the combustion chemistry is greatly simplified by using simple mixtures of pure components, referred to as surrogates, in lieu of fully-blended transportation fuels, such as gasoline. Recognizing that the ability to model autoignition chemistry is critical to understanding the operation of Homogeneous Charged Compression Ignition engines, this work is an attempt to experimentally and computationally assess the autoignition responses of research grade gasoline and two of its proposed surrogates reported in the literature using a rapid compression machine (RCM), for the low-to-intermediate temperature range and at high pressures. The first surrogate studied is a three-component mixture of iso-octane, n-heptane, and toluene. The second is a four-component mixture that includes an olefin (2-pentene), in addition to the ones noted above. Ignition delay times of stoichiometric mixtures, for gasoline and the two surrogates in air, are measured using an RCM for pressures of 20 and 40 bar, and in the temperature range of 650–900 K. The four-component surrogate is found to emulate the ignition delay times of gasoline more closely when compared to the three-component surrogate. Additionally, the experimental data are compared against the computed results from a recently developed surrogate model for gasoline combustion. A good agreement between the experimental and computed results is observed, while discrepancies are also identified and discussed.  相似文献   

10.
Experimental and computational investigation is carried out to elucidate the fundamental mechanism of autoignition of n-heptane, n-decane, and n-dodecane in non-premixed flows at elevated pressures up to 6 bar. The counterflow configuration is employed. In this configuration, an axisymmetric flow of a gaseous oxidizer stream is directed over the surface of an evaporating pool of liquid fuel. The oxidizer stream is a mixture of oxygen and nitrogen. The experiments are conducted at a fixed value of mass fraction of oxygen and at a fixed low value of strain rate. The temperature of the oxidizer stream at autoignition, Tig, is measured as a function of pressure, p. Computations are carried out using skeletal mechanisms constructed from a detailed mechanism and critical conditions of autoignition are predicted. The experimental data and predictions show that, for all fuels tested, Tig decreases with increasing p. At a fixed value of p, Tig for n-dodecane is the lowest, followed by n-decane and n-heptane. This indicates that n-dodecane is the most easily ignited, followed by n-decane and n-heptane. This is in agreement with previous experimental and computational studies at 1 atm, where a similar order of reactivities for these fuels was observed at low strain rates. Flame structures at conditions before and at conditions immediately after autoignition are calculated. A noteworthy finding is that low temperature chemistry is found to play a dominant role in promoting autoignition. The influence of low temperature chemistry is found to increase with increasing pressure.  相似文献   

11.
One of the major concerns in combustion engines is the sensitivity of engine performance to fuel properties. Recent works have shown that even slight differences in fuel properties can cause significant changes in performance and emission of an engine. In order to design the combustion engines with multi-fuel flexibilities, the precise assessment of fuel sensitivity on liquid jet atomization process is a prerequisite since the resulting fuel/air mixture is critical to the subsequent combustion process. The present study is focusing on the effect of physical fuel properties, mostly viscosity difference, on the breakup process of the liquid jet injected into still air. Two different jet fuels, CAT-A2 and CAT-C3, are considered here as surrogates for a fossil-based fuel and a bio-derived high-viscosity alternative fuel. The simulations are performed using the volume-of-fluid (VoF) interface tracking method coupled to Lagrangian particle method in order to capture the breakup instabilities of jets and the resulting droplets. The investigations take the actual geometry of the injector into account to resolve the unsteady flow phenomena inside the nozzle that impact the turbulence transition and atomization. The simulation results are compared to the experimental measurement using X-ray radiography. Both simulation and X-ray measurements consistently describe the effects of different fuels on the fundamental properties of atomization including the breakup length, transverse liquid volume fraction and the droplet sauter-mean-diameter. The application of a Detailed Numerical Simulation approach complemented by unique X-ray diagnostics is novel and providing new understanding and research directions in engine spray dynamics.  相似文献   

12.
An experimental and kinetic modeling study is carried out to characterize combustion of low molecular weight esters in nonpremixed, nonuniform flows. An improved understanding of the combustion characteristics of low molecular weight esters will provide insights on combustion of high molecular weight esters and biodiesel. The fuels tested are methyl butanoate, methyl crotonate, ethyl propionate, biodiesel, and diesel. Two types of configuration – the condensed fuel configuration and the prevaporized fuel configuration – are employed. The condensed fuel configuration is particularly useful for studies on those liquid fuels that have high boiling points, for example biodiesel and diesel, where prevaporization, without thermal breakdown of the fuel, is difficult to achieve. In the condensed fuel configuration, an oxidizer, made up of a mixture of oxygen and nitrogen, flows over the vaporizing surface of a pool of liquid fuel. A stagnation-point boundary layer flow is established over the surface of the liquid pool. The flame is stabilized in the boundary layer. In the prevaporized fuel configuration, the flame is established in the mixing layer formed between two streams. One stream is a mixture of oxygen and nitrogen and the other is a mixture of prevaporized fuel and nitrogen. Critical conditions of extinction and ignition are measured. The results show that the critical conditions of extinction of diesel and biodiesel are nearly the same. Experimental data show that in general flames burning the esters are more difficult to extinguish in comparison to those for biodiesel. At the same value of a characteristic flow time, the ignition temperature for biodiesel is lower than that for diesel. The ignition temperatures for biodiesel are lower than those for the methyl esters tested here. Critical conditions of extinction and ignition for methyl butanoate were calculated using a detailed chemical kinetic mechanism. The results agreed well with the experimental data. The asymptotic structure of a methyl butanoate flame is found to be similar to that for many hydrocarbon flames. This will facilitate analytical modeling, of structures of ester flames, using rate-ratio asymptotic techniques, developed previously for hydrocarbon flames.  相似文献   

13.
Non-sooting counterflow diffusion flames have been studied both computationally and experimentally, using either JP-8, or a six-component JP-8 surrogate mixture, or its individual components. The computational study employs a counterflow diffusion flame model, the solution of which is coupled with arc length continuation to examine a wide variety of inlet conditions and to calculate extinction limits. The surrogate model includes a semi-detailed kinetic mechanism composed of 221 gaseous species participating in 5032 reactions. Experimentally, counterflow diffusion flames are established, in which multicomponent fuel vaporization is achieved through the use of an ultrasonic nebulizer that introduces small fuel droplets into a heated nitrogen stream, fostering complete vaporization without fractional distillation. Temperature profiles and extinction limits are measured in all flames and compared with predictions using the semi-detailed mechanism. These measurements show good agreement with predictions in single-component n-dodecane, methylcyclohexane, and iso-octane flames. Good agreement also exists between predicted and measured variables in flames of the surrogate, and the agreement is even better between the experimental JP-8 flames and the surrogate predictions.  相似文献   

14.
Knowledge of the autoignition characteristics of diesel fuels is of great importance for understanding the combustion performance in engines and developing surrogate fuels. Here ignition delays of China's stage 6 diesel, a commercial fuel, were measured in a heated rapid compression machine (RCM) under engine-relevant conditions. Gas-phase autoignition experiments were carried out at equivalence ratios ranging from 0.37 to 1.0, under compressed pressures of 10, 15, and 20?bar, and within a temperature range of 685–865?K. In all investigated conditions, negative temperature coefficient (NTC) behavior of the total ignition delays is observed. The autoignition of the diesel fuel exhibits pronounced two-stage characteristics with strong low-temperature reactivity. Experimental results indicate that the total ignition delays shorten with increasing compressed pressure, oxygen mole fraction and fuel mole fraction. The first-stage ignition delays are mainly controlled by compressed temperature and also affected by oxygen mole fraction and compressed pressure but show a very weak dependence on fuel mole fraction. Correlations describing the first-stage ignition delay and the total ignition delay were proposed to further clarify the ignition delay dependence on the multiple factors. Additionally, it is found that the newly measured ignition delays well coincide with and complement the diesel ignition data in the literature. A recently developed diesel mechanism was used to simulate the diesel autoignition on the RCM. The simulation results are found to agree well the experimental measurements over the whole temperature ranges. Species concentration analysis and brute force sensitivity analysis were also conducted to identify the crucial species and reactions controlling the autoignition of the diesel fuel.  相似文献   

15.
预混燃烧室燃料与空气混合过程中出现的自点火会引起回火与挂火,烧毁燃料喷嘴。针对这一问题,利用实验台模拟贫燃燃烧室预混过程,燃料射流与预热后的空气协流同向喷入石英管预混段中,研究自点火现象。本文结合机器学习和物理规律分析,开展湍流混合过程的自点火预测研究。基于二元逻辑回归建立了机器学习模型,模型的特征由分析影响自点火的物理规律得到,训练和校验模型所需的数据由燃料射流-空气协流的自点火实验获得。结果显示,机器学习方法能快速、准确地预测混合过程中自点火的发生和火焰类型,并揭示其关键影响因素。与传统的数值计算方法相比,机器学习方法预测自点火所需的时间仅为传统数值模拟方法的几千分之一。  相似文献   

16.
Detailed high-fidelity kinetic models of fuels are of great significance by providing guidance for the improvement of the combustion performance in engines and promising the reduction of design cycle of new concept combustors. However, the kinetic modeling works on Chinese RP-3 kerosene, the most widely used civil aviation fuel in China, are meager to date. In this study, a kinetic model, including a surrogate fuel and its combustion kinetic mechanism, were developed to describe the combustion of RP-3. Firstly, a surrogate comprised of components n-dodecane, 2,2,4,6,6-pentamethylheptane (PMH), n-butylcyclohexane and n-butylbenzene (22.82/31.30/19.19/26.69 mol%) was proposed based on the combustion property target matching method. These components are all within the typical molecular size (C10-C14) of jet fuels and thereby can potentially improve the ability of the surrogate in emulating the properties that depend on molecular size. Experiments were then carried out in a heated rapid compression machine and a heated shock tube to evaluate the performance of the surrogate in reproducing the combustion behavior of the target fuel over wide conditions. It is found that the surrogate can reproduce the autoignition characteristics of RP-3 very well. A chemical kinetic mechanism was developed to describe the oxidation of this surrogate. This mechanism was assembled using a published n-butylbenzene sub-mechanism and our previous sub-mechanisms for the other pure components, and was assessed against the present experimental data. The results showed that the simulations agreed well with the experimental data under the investigated conditions, demonstrating that the composition of the surrogate and its mechanism are appropriate to describe the combustion of RP-3. The first-stage ignition negative temperature coefficient behavior and the evolution of key radicals were investigated using the kinetic model.  相似文献   

17.
This paper assesses the Presumed Mapping Function (PMF) approach in the context of the Stationary Laminar Flamelet Modelling (SLFM) of a reacting Double Scalar Mixing Layer (DSML). Starting from a prescribed Gaussian reference field, the PMF approach provides a presumed Probability Density Function (PDF) for the mixture fraction that is subsequently employed to close the Conditional Scalar Dissipation Rate (CSDR) upon doubly-integrating the homogeneous PDF transport equation. The PMF approach is unique in its ability to yield PDF and CSDR distributions that capture the effect of multiple fuel injections of different composition. This distinct feature overcomes the shortcomings of the classical SLFM closures (the β-distribution for the PDF and the counterflow solution for the CSDR). The current study analyses the impact of the binary (two-stream) and trinary (three-stream) PMF approaches on the structure of laminar flamelets in a DSML formed by the mixing of a fuel stream and an oxidiser stream separated by a pilot. The conditions of a partially-premixed methane/air piloted jet flame are considered. A parametric assessment is performed by varying the local mixing statistics and the findings are compared to those of the classical SLFM approach. Further, the influence of the PMF approach on flamelet extinction and transport by means of differential diffusion is thoroughly investigated. It is shown that the trinary PMF approach captures the influence of the pilot stream as it is capable of yielding bimodal CSDR and trimodal PDF distributions. It is further demonstrated that, when the influence of the pilot is significant, flamelets generated using the trinary CSDR closure extinguish at higher strain levels compared to flamelets generated using the binary and counterflow closures. Lastly, it is shown that the trinary PMF approach can be critical for accurate SLFM computations of DSMLs when differential diffusion effects are important.  相似文献   

18.
With the aim of utilizing JP-8 fuel for small scale portable power generation systems, catalytic combustion of JP-8 is studied. The surface ignition, extinction and autothermal combustion of JP-8, of a six-component surrogate fuel mixture, and the individual components of the surrogate fuel over a Pt/γ-Al2O3 catalyst are experimentally investigated in a packed bed flow reactor. The surrogate mixture exhibits similar ignition–extinction behavior and autothermal temperatures compared to JP-8 suggesting the possibility of using this surrogate mixture for detailed kinetics of catalytic combustion of JP-8. It is shown that JP-8 ignites at low temperatures in the presence of catalyst. Upon ignition, catalytic combustion of JP-8 and the surrogate mixture is self-sustained and robust combustion is observed under fuel lean as well as fuel rich conditions. It is shown that the ignition temperature of the hydrocarbon fuels increases with increasing equivalence ratio. Extinction is observed under fuel lean conditions, whereas sustained combustion was also observed for fuel rich conditions. The effect of dilution in the air flow on the catalytic ignition and autothermal temperatures of the fuel mixture is also investigated by adding helium to the air stream while keeping the flow rate and the equivalence ratio constant. The autothermal temperature decreases linearly as the amount of dilution in the flow is increased, whereas the ignition temperature shows no dependence on the dilution level under the range of our conditions, showing that ignition is dependent only on the type and relative concentration of the active species.  相似文献   

19.
The mixing fields within a SCRAM-jet combustion chamber are visualized using pressuresensitive paint (PSP) as an oxygen sensor. The experiments are performed in a small supersonic wind tunnel at the National Aerospace Laboratory — Kakuda Research Center (NAL-KRC). The main stream Mach number is 2.4, and the dynamic pressure ratios between the injected gas and the main flow are 0.3, 0.7, 1.1 and 1.5. Three fuel injection nozzles are used; oxygen is injected from the central nozzle and air from the two nozzles at either side. The spread of the injected gas is measured to observe the effects of placing the nozzles in different positions. The results show that the jet has its own independent flow structure, and that little mixing of gases occurs between the flow structures created by each nozzle. When the injection dynamic pressure ratio is increased, the oxygen fraction rises in the recirculation zone and falls in the separation zone downstream of the injection.  相似文献   

20.
Results of measurements of critical conditions for extinction and of temperature profiles in counterflow diffusion flames are reported. The fuel was a hydrogen–nitrogen mixture with 14 mole percent hydrogen, and the oxidizer was air. Pressures ranged from 0.1 MPa to 1.5 MPa; measurements were made in a facility especially constructed for carrying out counterflow combustion experiments at high pressures. With increasing pressure, the strain rate at extinction first increases and then decreases, in qualitative agreement with predictions, but there are observable quantitative differences. Temperature profiles, obtained employing an R-type thermocouple at a fixed strain rate of 100/s, agree well with predictions, within experimental uncertainty. The results may help to improve knowledge of underlying chemical-kinetic and transport parameters at elevated pressures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号