共查询到20条相似文献,搜索用时 24 毫秒
1.
Experimental study and modeling of shock tube ignition delay times for hydrogen-oxygen-argon mixtures at low temperatures 总被引:1,自引:0,他引:1
Recent literature has indicated that experimental shock tube ignition delay times for hydrogen combustion at low-temperature conditions may deviate significantly from those predicted by current detailed kinetic models. The source of this difference is uncertain. In the current study, the effects of shock tube facility-dependent gasdynamics and localized pre-ignition energy release are explored by measuring and simulating hydrogen-oxygen ignition delay times. Shock tube hydrogen-oxygen ignition delay time data were taken behind reflected shock waves at temperatures between 908 to 1118 K and pressures between 3.0 and 3.7 atm for two test mixtures: 4% H2, 2% O2, balance Ar, and 15% H2, 18% O2, balance Ar. The experimental ignition delay times at temperatures below 980 K are found to be shorter than those predicted by current mechanisms when the normal idealized constant volume (V) and internal energy (E) assumptions are employed. However, if non-ideal effects associated with facility performance and energy release are included in the modeling (using CHEMSHOCK, a new model which couples the experimental pressure trace with the constant V, E assumptions), the predicted ignition times more closely follow the experimental data. Applying the new CHEMSHOCK model to current experimental data allows refinement of the reaction rate for H + O2 + Ar ↔ HO2 + Ar, a key reaction in determining the hydrogen-oxygen ignition delay time in the low-temperature region. 相似文献
2.
Ignition-delay times were measured in shock-heated gases for a surrogate gasoline fuel comprised of ethanol/iso-octane/n-heptane/toluene at a composition of 40%/37.8%/10.2%/12% by liquid volume with a calculated octane number of 98.8. The experiments were carried out in stoichiometric mixtures in air behind reflected shock waves in a heated high-pressure shock tube. Initial reflected shock conditions were as follows: Temperatures of 690-1200 K, and pressures of 10, 30 and 50 bar, respectively. Ignition delay times were determined from CH∗ chemiluminescence at 431.5 nm measured at a sidewall location. The experimental results are compared to simulated ignition delay times based on detailed chemical kinetic mechanisms. The main mechanism is based on the primary reference fuels (PRF) model, and sub-mechanisms were incorporated to account for the effect of ethanol and/or toluene. The simulations are also compared to experimental ignition-delay data from the literature for ethanol/iso-octane/n-heptane (20%/62%/18% by liquid volume) and iso-octane/n-heptane/toluene (69%/17%/14% by liquid volume) surrogate fuels. The relative behavior of the ignition delay times of the different surrogates was well predicted, but the simulations overestimate the ignition delay, mostly at low temperatures. 相似文献
3.
Hsi-Ping S. Shen 《Proceedings of the Combustion Institute》2009,32(1):165-172
The auto-ignition of toluene/air mixtures was studied in a shock tube at temperatures of 1021-1400 K, pressures of 10-61 atm, and equivalence ratios of Φ = 1.0, 0.5, and 0.25. Ignition times were measured using endwall OH∗ emission and sidewall piezoelectric pressure measurements. The measured pressure time-histories do not show significant pre-ignition energy release, in agreement with the rapid compression machine study of Mittal and Sung [G. Mittal, C.-J. Sung, Combust. Flame 150 (2007) 355-368] and disagreement with the shock tube study of Davidson et al. [D.F. Davidson, B.M. Gauthier, R.K. Hanson, Proc. Combust. Inst. 30 (2005) 1175-1182]. Kinetic modeling predictions from three detailed mechanisms are compared. Sensitivity analysis indicates that the reaction of toluene (C6H5CH3) and the benzyl radical (C6H5CH2) with molecular oxygen are important and examination of the rate coefficients for these reactions suggests that improved rate parameters for the multi-channel C6H5CH2 + O2 reaction may improve model predictions. 相似文献
4.
Biofuels are attractive alternatives to petroleum derived transportation fuels. n-Butanol, or biobutanol, is one alternative biofuel that can replace gasoline and diesel in transportation applications. Similar to ethanol, n-butanol can be produced via the fermentation of sugars, starches, and lignocelluloses obtained from agricultural feedstocks. n-Butanol has several advantages over ethanol, but the detailed combustion characteristics are not well understood. This paper studies the oxidation of n-butanol in a jet stirred reactor at 10 atm and a range of equivalence ratios. The profiles for CO, CO2, H2O, H2, C1-C4 hydrocarbons, and C1-C4 oxygenated compounds are presented herein. High levels of carbon monoxide, carbon dioxide, water, hydrogen, methane, formaldehyde, ethylene, and propene are detected. The experimental data are used to validate a novel detailed chemical kinetic mechanism for n-butanol oxidation. The proposed mechanism well predicts the concentration of major product species at all temperatures and equivalence ratios studied. Insights into the prediction of other species are presented herein. The proposed mechanism indicates that n-butanol consumption is dominated by H-atom abstraction from the α, β, and γ carbon atoms. A sensitivity analysis is also presented to show the effects of reaction kinetics on the concentration of several poorly predicted species. 相似文献
5.
Tom Bieleveld Alberto Cuoci Eliseo Ranzi Kalyanasundaram Seshadri 《Proceedings of the Combustion Institute》2009,32(1):493-500
Experimental and numerical studies are carried out to construct surrogates that can reproduce selected aspects of combustion of gasoline in non premixed flows. Experiments are carried out employing the counterflow configuration. Critical conditions of extinction and autoignition are measured. The fuels tested are n-heptane, iso-octane, methylcyclohexane, toluene, three surrogates made up of these components, called surrogate A, surrogate B, and surrogate C, two commercial gasoline with octane numbers (ON) of 87 and 91, and two mixtures of the primary reference fuels, n-heptane and iso-octane, called PRF 87 and PRF 91. The combustion characteristics of the commercial gasolines, ON 87 and ON 91, are found to be nearly the same. Surrogate A and surrogate C are found to reproduce critical conditions of extinction and autoignition of gasoline: surrogate C is slightly better than surrogate A. Numerical calculations are carried out using a semi-detailed chemical-kinetic mechanism. The calculated values of the critical conditions of extinction and autoignition of the components of the surrogates agree well with experimental data. The octane numbers of the mixtures PRF 87 and PRF 91 are the same as those for the gasoline tested here. Experimental and numerical studies show that the critical conditions of extinction and autoignition for these fuels are not the same as those for gasoline. This confirms the need to include at least aromatic compounds in the surrogate mixtures. The present study shows that the semi-detailed chemical-kinetic mechanism developed here is able to predict key aspects of combustion of gasoline in non premixed flows, although further kinetic work is needed to improve the combustion chemistry of aromatic species, in particular toluene. 相似文献
6.
A new detailed kinetic model of soot formation in shock tube pyrolysis and oxidation of aliphatic and aromatic hydrocarbons is proposed. The model is based on the comprehensive kinetic model of PAH formation and growth [H. Richter, J.B. Howard, Phys. Chem. Chem. Phys. 4 (2002) 2038-2055; H. Richter, S. Granata, W.H. Green, J.B. Howard, Proc. Combust. Inst. 30 (2005) 1397-1405; J. Appel, H. Bockhorn, M. Frenklach, Combust. Flame 121 (2000) 122-136; M. Frenklach, D.W. Clary, T. Yuan, W.C. Gardiner, Jr., S.E. Stein, Combust. Sci. Tech. 50 (1986) 79-115; M. Frenklach, J. Warnatz, Combust. Sci. Tech. 51 (1987) 265-283; M.S. Skjøth-Rasmussen, P. Glarborg, M. Østberg, J.T. Johannessen, H. Livbjerg, A.D. Jensen, T.S. Christensen, Combust. Flame 136 (2004) 91-128], on the new concepts of soot particle nucleation [A. Violi, Combust. Flame 139 (2004) 279-287; A. Violi, A.F. Sarofim, G.A. Voth, Combust. Sci. Tech. 176 (2004) 991-1005; A. D’Alessio, A. D’Anna, P. Minutolo, L.A. Sgro, A. Violi, Proc. Combust. Inst. 28 (2000) 2547-2554; A. D’Anna, A. Violi, A.D’Alessio, A.F. Sarofim, Combust. Flame 127 (2001) 1995-2003] and the traditional H-abstraction/C2H2-addition (HACA) route of PAH and soot particles surface growth [H. Wang, M. Frenklach, Combust. Flame 110 (1997) 173-221; J. Appel, H. Bockhorn, M. Frenklach, Combust. Flame 121 (2000) 122-136]. The gas-phase kinetic scheme was validated against the experimentally measured concentration profiles of the main gas-phase species formed during toluene pyrolysis and H and OH radicals during benzene and phenol pyrolysis and toluene oxidation behind reflected shock waves. The model describes the main characteristics of soot formation in pyrolysis and oxidation of toluene and n-heptane oxidation under conditions typical of shock tube experiments. Both hydrocarbons have the same number of carbon atoms but different structures, which causes different behavior of the systems. The discrete Galerkin technique was applied for direct counting of the mean number of active sites formed on the surface of soot precursors and soot particles in reactions of activation, deactivation, and surface growth. 相似文献
7.
Soot formation is compared in turbulent diffusion flames burning a commercial Diesel and two Diesel surrogates containing n-decane and α-methylnaphthalene. A burner equipped with a high-efficiency atomisation system has been specially designed and allows the stabilisation of liquid fuels flames with similar hydrodynamics conditions. The initial surrogate composition (70% n-decane, 30% α-methylnaphthalene) was previously used in the literature to simulate combustion in Diesel engines. In this work, a direct comparison of Diesel and surrogates soot tendencies is undertaken and relies on soot and fluorescent species mappings obtained respectively by Laser-Induced Incandescence (LII) at 1064 nm and Laser-Induced Fluorescence at 532 nm. LIF was assigned to soot precursors and mainly to high-number ring Polycyclic Aromatic Hydrocarbons (PAH). The initial surrogate was found to form 40% more soot than the tested Diesel. Consequently, a second surrogate containing a lower α-methylnaphthalene concentration (20%) has been formulated. That composition which presents a Threshold Soot Index (TSI) very close to Diesel one is also consistent with our Diesel composition that indicates a relatively low PAH content. The spatially resolved measurements of soot and fluorescent soot precursors are quite identical (in shape and intensity) in the Diesel and in the second surrogate flames. Furthermore the concordance of the LII temporal decays suggests that a similar growth of the primary soot particles has occurred for Diesel and surrogates. In addition, the comparison of the LII fluence curves indicates that physical/optical properties of soot contained in the different flames might be similar. The chemical composition present at the surface of soot particles collected in Diesel and surrogate flames has been obtained by laser-desorption ionisation time-of-flight mass spectrometry. An important difference is found between Diesel and surrogate samples indicating the influence of the fuel composition on soot content. 相似文献
8.
In order to accurately control the oxidation aperture in high power vertical cavity surface emitting lasers (VCSELs), the selective oxidation process is studied with experiments. Selective oxidation experiments are carried out upon the simulate wafer of VCSELs at different temperature. Oxidation products are examined at different oxidation depths of oxidation layer and each component content is analyzed. The results of the experiments are analyzed with the kinetics of thermal diffusion. The analyzed results show that the concentration of oxidant is e exponentially declined with increasing depth of oxidation in high-power VCSELs. The oxidation depth stability and precision can be improved by lowering the oxidation temperature and prolonging the oxidation time. 相似文献
9.
10.
Yasuyuki Sakai Mitsuo Koshi William J. Pitz 《Proceedings of the Combustion Institute》2009,32(1):411-418
A detailed chemical kinetic model for the mixtures of primary reference fuel (PRF: n-heptane and iso-octane) and toluene has been proposed. This model is divided into three parts; a PRF mechanism [T. Ogura, Y. Sakai, A. Miyoshi, M. Koshi, P. Dagaut, Energy Fuels 21 (2007) 3233-3239], toluene sub-mechanism and cross reactions between PRF and toluene. Toluene sub-mechanism includes the low temperature kinetics relevant to engine conditions. A chemical kinetic mechanism proposed by Pitz et al. [W.J. Pitz, R. Seiser, J.W. Bozzelli, et al., in: Chemical Kinetic Characterization of the Combustion of Toluene, Proceedings of the Second Joint Meeting of the U.S. Sections of the Combustion Institute, 2001] was used as a starting model and modified by updating rate coefficients. Theoretical estimations of rate coefficients were performed for toluene and benzyl radical reactions important at low temperatures. Cross reactions between alkane, alkene, and aromatics were also included in order to account for the acceleration by the addition of toluene into iso-octane recently found in the shock tube study of the ignition delay [Y. Sakai, H. Ozawa, T. Ogura, A. Miyoshi, M. Koshi, W.J. Pitz, Effects of Toluene Addition to Primary Reference Fuel at High Temperature, SAE 2007-01-4104, 2007]. Validations of the model were performed with existing shock tube and flow tube data. The model well predicts the ignition characteristics of PRF/toluene mixtures under the wide range of temperatures (500-1700 K) and pressures (2-50 atm). It is found that reactions of benzyl radical with oxygen molecule determine the reactivity of toluene at low temperature. Although the effect of toluene addition to iso-octane is not fully resolved, the reactions of alkene with benzyl radical have the possibility to account for the kinetic interactions between PRF and toluene. 相似文献
11.
12.
Matthew S. Celnik 《Proceedings of the Combustion Institute》2009,32(1):639-646
An updated rate of O2 oxidation of one to four ring polyaromatic hydrocarbons in premixed flames is presented based on density function theory simulations of oxygen attack at different radical sites on various PAHs. The rate is in agreement with other rates found in the literature; however, it is several orders of magnitude lower than the currently accepted oxidation rate of multi-ring aromatic species, including soot. Simulations are presented of a premixed flame using this improved rate and a new advanced soot particle model, which is developed in this paper. This model includes unprecedented detail of the particles in the ensemble, including the aromatic content, C/H composition and primary-particle aggregate structure. The O2 oxidation rate calculated in this paper is shown to give a better prediction of particle number density and soot volume fraction for a premixed flame. The predicted particle size distributions are shown also to describe better the experimental data. Predicted C/H ratio and PAH size distributions are shown for the flame. Computed TEM-style images are compared to experimental TEM images, which show that the aggregate structure of the particles is well predicted. 相似文献
13.
Ultrasound is a promising technology for the improvement of zeolite production, due to its beneficial effects on mass transfer and nucleation. However, a broad understanding of the sonication parameters that influence the growth of zeolites most is still lacking. In the present work, zeolite A was synthesized and the kinetic model of Gualtieri was used to obtain information about the crystallization parameters. The effect of the sonication power and duration on the relative crystallinity and particle size distribution were investigated using a Langevin-type transducer operating at 40 kHz. The experimental data shows that ultrasound has a significant effect on the nucleation and growth. With that, a reduction of up to 40 % of the initial synthesis time can be achieved. Additionally, a narrower particle size distribution is achieved when ultrasound is used during the zeolite A synthesis. 相似文献
14.
Dongil Kang Aleksandr Fridlyand S. Scott Goldsborough Scott W. Wagnon Marco Mehl William J. Pitz Matthew J. McNenly 《Proceedings of the Combustion Institute》2019,37(4):4699-4707
Robust surrogate formulation for gasoline fuels is challenging, especially in mimicking auto-ignition behavior observed under advanced combustion strategies including boosted spark-ignition and advanced compression ignition. This work experimentally quantifies the auto-ignition behavior of bi- and multi-component surrogates formulated to represent a mid-octane (Anti-Knock Index 91.5), full boiling-range, research grade gasoline (Fuels for Advanced Combustion Engines, FACE-F). A twin-piston rapid compression machine is used to achieve temperature and pressure conditions representative of in-cylinder engine operation. Changes in low- and intermediate-temperature behavior, including first-stage and main ignition times, are quantified for the surrogates and compared to the gasoline. This study identifies significant discrepancies in the first-stage ignition behavior, the influence of pressure for the bi- to ternary blends, and highlights that better agreement is achieved with multi-component surrogates, particularly at lower temperature regimes. A recently-updated detailed kinetic model for gasoline surrogates is also used to simulate the measurements. Sensitivity analysis is employed to interpret the kinetic pathways responsible for reactivity trends in each gasoline surrogate. 相似文献
15.
Computational and experimental study of JP-8, a surrogate, and its components in counterflow diffusion flames 总被引:5,自引:0,他引:5
James A. Cooke Matteo Bellucci Mitchell D. Smooke Alessandro Gomez Angela Violi Tiziano Faravelli Eliseo Ranzi 《Proceedings of the Combustion Institute》2005,30(1):439-446
Non-sooting counterflow diffusion flames have been studied both computationally and experimentally, using either JP-8, or a six-component JP-8 surrogate mixture, or its individual components. The computational study employs a counterflow diffusion flame model, the solution of which is coupled with arc length continuation to examine a wide variety of inlet conditions and to calculate extinction limits. The surrogate model includes a semi-detailed kinetic mechanism composed of 221 gaseous species participating in 5032 reactions. Experimentally, counterflow diffusion flames are established, in which multicomponent fuel vaporization is achieved through the use of an ultrasonic nebulizer that introduces small fuel droplets into a heated nitrogen stream, fostering complete vaporization without fractional distillation. Temperature profiles and extinction limits are measured in all flames and compared with predictions using the semi-detailed mechanism. These measurements show good agreement with predictions in single-component n-dodecane, methylcyclohexane, and iso-octane flames. Good agreement also exists between predicted and measured variables in flames of the surrogate, and the agreement is even better between the experimental JP-8 flames and the surrogate predictions. 相似文献
16.
Ignition delay times and OH concentration time-histories were measured in DME/O2/Ar mixtures behind reflected shock waves. Initial reflected shock conditions covered temperatures (T5) from 1175 to 1900 K, pressures (P5) from 1.6 to 6.6 bar, and equivalence ratios (?) from 0.5 to 3.0. Ignition delay times were measured by collecting OH∗ emission near 307 nm, while OH time-histories were measured using laser absorption of the R1(5) line of the A-X(0,0) transition at 306.7 nm. The ignition delay times extended the available experimental database of DME to a greater range of equivalence ratios and pressures. Measured ignition delay times were compared to simulations based on DME oxidation mechanisms by Fischer et al. [7] and Zhao et al. [9]. Both mechanisms predict the magnitude of ignition delay times well. OH time-histories were also compared to simulations based on both mechanisms. Despite predicting ignition delay times well, neither mechanism agrees with the measured OH time-histories. OH Sensitivity analysis was applied and the reactions DME ↔ CH3O + CH3 and H + O2 ↔ OH + O were found to be most important. Previous measurements of DME ↔ CH3O + CH3 are not available above 1220 K, so the rate was directly measured in this work using the OH diagnostic. The rate expression k[1/s] = 1.61 × 1079T−18.4 exp(−58600/T), valid at pressures near 1.5 bar, was inferred based on previous pyrolysis measurements and the current study. This rate accurately describes a broad range of experimental work at temperatures from 680 to 1750 K, but is most accurate near the temperature range of the study, 1350-1750 K. When this rate is used in both the Fischer et al. and Zhao et al. mechanisms, agreement between measured OH and the model predictions is significantly improved at all temperatures. 相似文献
17.
Wayne K. Metcalfe William J. Pitz John M. Simmie 《Proceedings of the Combustion Institute》2007,31(1):377-384
Shock tube experiments and chemical kinetic modeling were carried out on 2,4,4-trimethyl-1-pentene and 2,4,4-trimethyl-2-pentene, the two isomers of diisobutylene, a compound intended for use as an alkene component in a surrogate diesel. Ignition delay times were obtained behind reflected shock waves at 1 and 4 atm, and between temperatures of 1200 and 1550 K. Equivalence ratios ranging from 1.0 to 0.25 were examined for the 1-pentene isomer. A comparative study was carried out on the 2-pentene isomer and on the blend of the two isomers. It was found that the 2-pentene isomer ignited significantly faster under shock tube conditions than the 1-pentene isomer and that the ignition delay times for the blend were directly dependant on the proportions of each isomer. These characteristics were successfully predicted using a detailed chemical kinetic mechanism. It was found that reactions involving isobutene were important in the decomposition of the 1-pentene isomer. The 2-pentene isomer reacted through a different pathway involving resonantly stabilized radicals, highlighting the effect on the chemistry of a slight change in molecular structure. 相似文献
18.
Gerald Mairinger Alessio Frassoldati Alberto Cuoci Matteo Pelucchi Ernst Pucher Kalyanasundaram Seshadri 《Proceedings of the Combustion Institute》2019,37(2):1605-1614
Experimental and computational investigations are carried out to elucidate the fundamental mechanisms of autoignition of surrogates of jet-fuels at elevated pressures up to 6 bar. The jet-fuels tested are JP-8, Jet-A, and JP-5, and the surrogates tested are the Aachen Surrogate made up of 80 % n-decane and 20 % 1,3,5-trimethylbenzene by mass, Surrogate C made up of 60 % n-dodecane, 20 % methylcyclohexane and 20 % o-xylene by volume, and the 2nd generation Princeton Surrogate made up of 40.4 % n-dodecane, 29.5 % 2,2,4-trimethylpentane, 7.3 % 1,3,5-trimethylbenzene and 22.8 % n-propylbenzene by mole. Using the counterflow configuration, an axisymmetric flow of a gaseous oxidizer stream, made up of a mixture of oxygen and nitrogen, is directed over the surface of an evaporating pool of a liquid fuel. The experiments are conducted at a fixed value of mass fraction of oxygen in the oxidizer stream and at a fixed value of the strain rate. The temperature of the oxidizer stream at autoignition, Tig, is measured as a function of pressure, p. Experimental results show that the critical conditions, of autoignition of the surrogates are close to that of the jet-fuels. Overall the critical conditions of autoignition of Surrogate C agree best with those of the jet-fuels. Computations were performed using skeletal mechanisms constructed from a detailed mechanism. Predictions of the critical conditions of autoignition of the surrogates are found to agree well with measurements. Computations show that low-temperature chemistry plays a significant role in promoting autoignition for all surrogates. The low-temperature chemistry, of the component of the surrogate with the greatest volatility, was found to have the most influence on the critical conditions of autoignition. 相似文献
19.
Gani Issayev Khalil Djebbi Goutham Kukkadapu Marco Mehl Scott W. Wagnon William J. Pitz Aamir Farooq 《Proceedings of the Combustion Institute》2021,38(1):641-649
Distillate fuels contain significant proportions of naphtheno-aromatic components and tetralin is a suitable surrogate component to represent this molecular moiety. The presence of aromatic and naphthyl rings makes kinetic modeling of tetralin very challenging. Primary radicals formed during the oxidation of tetralin can be aryl, benzylic or paraffinic in nature. Using available information on reaction paths and rate constants of naphthenes and alkyl-aromatics, a kinetic model of tetralin has been developed in the current study with emphasis on low-temperature chemistry and high-pressure conditions. Due to the lack of high-level quantum chemical calculations on reaction pathways of tetralin, analogous rates from ab-initio studies on benzylic and paraffinic radicals have been adopted here. Some modifications to the reaction rate rules are incorporated to account for the unique characteristics of tetralin's molecular structure. Important reaction channels have been identified using reaction path and brute force sensitivity analyses. In order to investigate the model performance at low temperatures, new experiments are carried out in a rapid compression machine on blends of tetralin and 3-methylpentane. Blending of low-reactivity tetralin with a high-reactivity alkane allowed the investigation of tetralin ignition at very low temperatures (665 – 856 K). The kinetic model developed in the current study is found to predict the current experiments and literature data adequately. The new model will aid in high-fidelity surrogate predictions at engine-relevant conditions. 相似文献
20.
In this work, a three-dimensional Computational Fluid Dynamic (CFD) analysis of a swirling jet reactor was implemented to gain a better understanding of fluid dynamics into the reactor. The effect of different geometries of the reactor, by considering different diameters of the injection slots of the reactor, on flow velocity and flow pressure distributions was investigated. Firstly, a one-phase model was implemented by considering only water into the reactor. Then, a two-phase model was defined including dissolved air into the water. The inlet flow pressure was set to 0.25 bar to consider non-cavitating conditions and, then, to get more accurate results on fluid dynamics into the reactor due to the absence of cavitating conditions. Data collected from experimental tests were used to calibrate and validate the model. Results of numerical simulations were in good agreement with experimental data, showing for all the geometries a rotating flow around the central axis of the reactor and at the exit of the double cone. The highest flow velocities and flow pressure drops were observed for the reactor geometry with the smallest injection slots diameters. Finally, noise measurements were performed during another set of experimental tests by considering different inlet flow pressures. 相似文献