首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为降低氧化铝陶瓷制备成本,改善其性能,以价格低廉的纳米η-Al2 O3为原料,TiO2为烧结助剂,制备氧化铝陶瓷.研究了TiO2加入量对纳米η-Al2 O3氧化铝陶瓷的体积密度、显气孔率、物相组成和微观结构的影响.结果表明:TiO2通过增加氧化铝中铝离子点缺陷数量而提高其扩散系数,促进氧化铝陶瓷的致密化及晶粒的生长.η-Al2 O3到α-Al2 O3的相变首先在氧化铝颗粒表面进行,然后迅速扩散至内部完成.通过计算晶胞参数大小,定量证明刚玉晶体发育良好,引入适量TiO2对氧化铝陶瓷高温性能和化学稳定性影响较小.当TiO2加入量为2wt;,烧结温度为1600℃时,氧化铝陶瓷的性能优良,体积密度为3.70 g/cm3、显气孔率为1.2;,存在一定数量的晶间气孔和晶内气孔,晶体间结合紧密,晶粒尺寸10~30μm.  相似文献   

2.
采用99;纳米η-Al2O3为原料,无压烧结制备单相氧化铝陶瓷,通过TG-DSC、XRD和SEM等手段对试样进行分析和表征,并测试其力学性能.结果表明:纳米η-Al2O3 1084.8℃时转变为α-Al2O3,转变温度小于理论转变温度;晶型转变释放的能量能够降低氧化铝陶瓷的烧结温度,1550℃时试样的相对密度达91.48;,显气孔率为2.45;,断裂韧性较高.由于η-Al2O3的密度小于α-Al2O3,无压烧结时试样发生晶型转变产生体积收缩,致密性较低,直接用η-Al2O3制备致密的单相Al2O3陶瓷较为困难.  相似文献   

3.
吴洋  吴伯麟 《人工晶体学报》2015,44(9):2479-2483
实验以98wt; Al2O3为基体,在CaO-MgO-Al2O3-SiO2四元体系中,研究添加稀土Sm2O3对98氧化铝陶瓷烧结温度、体积密度以及耐磨性能的影响.实验结果表明:添加适量的稀土氧化钐能够降低陶瓷的初始烧结温度并且提高氧化铝陶瓷的体积密度和耐磨性能.当稀土氧化钐的掺量达到1.6wt;时,陶瓷的磨损率达到最低,较不掺稀土的氧化铝陶瓷试样,耐磨性提高了约30.9;.除此之外,发现稀土Sm3+固溶到六铝酸钙中,增强了晶界结合强度,提升了陶瓷耐磨性能.  相似文献   

4.
本文概述用溶胶-凝胶法制备锰锌铁氧体系列粉末的工艺;通过凝胶的差热分析实验,掌握制备锰锌铁氧体系列粉末适当的煅烧温度区间;列出MnxZn1-xFe2O4(x=0.25、0.5、0.75)样品的XRD衍射图;用不同的煅烧温度和不同的煅烧时间来处理x=0.25的样品,得到的数据通过多项式拟合,求出晶粒度与煅烧温度(D-T)曲线方程和晶粒度与煅烧时间(D-t)的曲线方程;分别讨论晶粒度随二者变化的原因.  相似文献   

5.
水热法合成矾土基α-Al2O3纳米粉   总被引:1,自引:1,他引:0  
以650 ℃轻烧后的高铝矾土为原料,利用水热法合成了以α-Al2O3为主晶相的纳米粉.研究了晶种、矿化剂、水热温度和水热时间对产物中α-Al2O3含鼍、晶粒度大小的影响,采用XRD、SEM分析了纳米粉体的物相与形貌.结果表明,加入3;质量分数的晶种在380℃水热处理2 h后,合成出晶粒度为28 nm、以α-Al2O3为主晶相的α-Al2O3纳米粉,其形貌呈圆球状,二次粒度为190 nm.  相似文献   

6.
实验首先以γ-AlOOH粉体为原料,KCl-Na2SO4复合盐为熔剂,采用助熔剂法合成了α-Al2O3片晶,通过对合成片晶成型烧成,制备具有片状晶体支撑的氧化铝多孔陶瓷材料.并对α-Al2O3片晶形成过程,多孔陶瓷显气孔率、抗折强度、微观结构以及孔径分布进行了研究.研究结果表明,在KCl与Na2SO4复合盐存在情况下,可在900℃条件下合成分散性好,颗粒大小均匀的六方形α-Al2O3片晶,片晶的直径大约在10μm,厚度为0.3~0.5 μm.合成的α-Al2O3片晶具有非常好的烧结活性,在无添加烧结助剂的情况下,1600℃保温2h得到了显气孔率为41.74;,抗折强度为115.34MPa,孔径分布范围窄的氧化铝多孔陶瓷.窄的孔径分布以及优异的机械性能使其成为一种很有前途的膜支撑体和精确过滤材料.  相似文献   

7.
冯鑫  刘涛  黎阳 《人工晶体学报》2017,46(12):2332-2336
以煅烧α-Al2O3粉为骨料、磷酸二氢铝为高温烧成粘结剂、石蜡为成型助剂,通过模压成型、干燥、烧结等工序制备了氧化铝多孔陶瓷,研究了烧成温度和磷酸二氢铝含量对氧化铝多孔陶瓷微观形貌、物相组成、线收缩率、孔隙率和弯曲强度的影响,探讨了磷酸盐结合法烧结机理.结果表明:氧化铝多孔陶瓷物相由α-Al2 O3和AlPO4构成,在较低温度下,氧化铝颗粒仅依靠AlPO4的粘结作用而形成多孔陶瓷,氧化铝多孔陶瓷线收缩率和弯曲强度随磷酸二氢铝含量的增加而缓慢增大,孔隙率则缓慢降低;随着烧结温度的提高,AlPO4的存在促进了氧化铝颗粒间的液相烧结,线收缩率和弯曲强度随烧结温度的升高而显著增大,孔隙率也明显降低.  相似文献   

8.
制备了Nd3+∶ZnO-B2O3-Al2O3-SiO2系透明玻璃陶瓷.运用差热分析(DTA)、X射线衍射(XRD)、扫描电镜(SEM)、NV-Vis-Nir(紫外可见近红外分光光度计)、傅里叶变换荧光光谱等测试方法,研究了晶核剂的含量对Nd3∶ZnO-B2O3-Al2O3-SiO2系透明玻璃陶瓷的核化和晶化性能的影响.利用修正的Kissinger方程研究了晶核剂对玻璃析晶动力学参数,析晶活化能E和析晶动力学判据k(Tp),利用Augis-Bennett方程计算出Avrami参数n.并分析其显微形貌同光透过率的关系,对光学性能进行了研究.  相似文献   

9.
采用无压烧结技术,以0.25wt;CaO、1wt;MgO、2.75wt;SiO2为添加剂,在1500 ℃、1550 ℃、1600 ℃下烧结制备了Al2O3陶瓷,分别在150~400 ℃温度范围内和40;~100;的相对湿度环境下,对Al2O3陶瓷的直流电阻率进行检测.样品的相组成和显微结构通过X-ray衍射分析(XRD)和扫描电子显微镜(SEM)表征.结果表明,环境温度由150 ℃上升到400 ℃,样品的直流电阻率降低了约2~2.5个数量级;环境相对湿度从40;上升到100;,样品的直流电阻下降了约3~4个数量级.在相同测试条件下,1500 ℃烧结的Al2O3陶瓷样品由于小的晶粒尺寸和高的孔隙率,从而导致其具有更高的电阻率.  相似文献   

10.
水热法合成α-Al2O3晶体   总被引:14,自引:9,他引:5  
本文研究了不同矿化剂,不同温度对水热条件下合成α-Al2O3晶体的大小、形貌和晶体质量的影响.发现在矿化剂浓度为0.1M KOH和1M KBr条件下,填充度为35;,温度为380℃时Al(OH)3只转化成薄水铝石,无α-Al2O3晶体生成;388℃时只是部分转化成α-Al2O3;在395℃以上时完全能转化成α-Al2O3,晶体形状为六棱柱形.在矿化剂浓度为1M KOH时,填充度35;,温度为380℃时,即有部分Al(OH)3转化成α-Al2O3,390℃以上完全转化成α-Al2O3,晶面主要显露菱面.  相似文献   

11.
以煤矿废弃物煤矸石和煤炭伴生页岩为主要原材料,抛光渣为造孔剂、滑石为助熔剂,制备泡沫隔热陶瓷.借鉴三元相图分析方法,研究原材料化学组成配比对泡沫隔热陶瓷物理性能的影响,并优化其组成配比.研究表明,当控制SiO2-Al2O3-MgO系统的SiO2为71.7;~72.8;、Al2 O3为16;~16.5;和MgO为11.2;~12.4;范围内时,泡沫隔热陶瓷的孔隙率大于70;,吸水率小于0.25;,抗压强度大于12 MPa.  相似文献   

12.
分别以十八水合硫酸铝和氢氧化铝为γ-Al2O3源,以硫酸钠为熔盐,干法混合熔盐和γ-Al2O3,采用熔盐法制备片状氧化铝.结果表明:以氢氧化铝为γ-Al2O3源,由于氢氧化铝为母盐分解后仍保留球形多面体的母盐假相,熔盐只能溶解球形多面体表面的氧化铝,经过溶解-沉淀过程生长出少量镶嵌于球形多面体的片状氧化铝,不能制备片状氧化铝;以十八水合硫酸铝为氧化铝源,分解后形成的分散程度良好的γ-Al2O3与硫酸钠熔盐摩尔比γ-Al2O3∶Na2SO4=1∶4时能够充分溶解于熔盐中,可制备出分散的片状氧化铝.  相似文献   

13.
以Al2(SO4)3·18H2O为原料,采用熔融盐法制备片状α-Al2O3粉体,详细研究了纳米α-Al2O3晶种与片状α-Al2O3晶种对片状α-Al2O3粉体粒径大小的影响.研究表明,随着纳米α-Al2O3晶种含量的增加,片状α-Al2O3粉体平均粒径明显减小;随着片状α-Al2O3晶种含量的增加,片状α-Al2O3粉体平均粒径会增大,但粒径增大的幅度会逐步降低.对片状α-Al2O3粉体粒径大小进行了数值模拟,模拟结果表明,片状α-Al2O3粉体的最终平均粒径大小与片状α-Al2O3晶种粒径成正比,与片状α-Al2O3晶种含量的三次方根成反比关系;通过改变片状α-Al2O3晶种的粒径大小与含量,能够很好地实现片状α-Al2O3粉体粒径大小的控制.  相似文献   

14.
采用等体积浸渍法改性制备了K2 WO4/Al2 O3催化剂,研究了载体Al2 O3晶型对K2 WO4/Al2 O3催化剂物化性质及催化合成甲硫醇的影响.借助XRD、SEM、EDS、BET及NH3/CO2-TPD等手段对不同催化剂的晶相组成、微观形貌、孔结构及表面酸碱性质进行了表征分析.结果表明,Al2 O3晶型对K2 WO4/Al2 O3催化剂晶相组成及微观形貌影响较小,但对孔结构及表面酸碱性质影响较大.与K2 WO4/η-Al2 O3和K2 WO4/θ-Al2 O3催化剂相比,K2 WO4/γ-Al2 O3催化剂具有更大比表面积及孔容(介孔比表面积为226.75 m2·g-1,总孔容为0.557 cm3·g-1),且表面仅有弱酸和弱碱中心(弱酸浓度为0.42521 mmol·g-1,弱碱浓度为0.44184 mmol·g-1).在反应温度370℃,反应压力1.0 MPa,H2 S流速4.9 mL·min-1,CH3 OH流速0.03 mL·min-1反应条件下,K2 WO4/γ-Al2 O3催化剂表现出优良催化性能,甲醇转化率和甲硫醇选择性分别达81.58;和87.05;,与K2 WO4/η-Al2 O3和K2 WO4/θ-Al2 O3催化剂相比,甲醇转化率分别提高了4.23;和19.42;,甲硫醇选择性分别提高了14.68;和7.85;.  相似文献   

15.
以高岭土、滑石粉、工业氧化铝和不同粒度的Fe2O3粉为原料,研究了Fe2 O3粉的粒度对堇青石蜂窝陶瓷相组成、微观形貌和孔径分布的影响.实验结果表明:随着外加Fe2O3粉粒度的减小,加快了离子扩散速率,固溶量增加,堇青石的固相反应速率增加.当Fe2O3粉粒度为5μm和50μm时试样的微观结构中有微裂纹产生,为降低材料的热膨胀系数打下了基础.随着加入Fe2O3粉粒度的逐渐增大,产生液相,填充了试样中微孔,使孔径尺寸减小,孔径数量减少.  相似文献   

16.
以硝酸铝、柠檬酸为原料,采用溶胶-凝胶法制备Al2O3粉体.利用X射线衍射仪、扫描电子显微镜对Al2O3粉体的晶体结构、形貌及粒径进行表征,并研究以MgO-CuO-TiO2作为添加剂时,Al2O3陶瓷的烧结特性及介电性能.结果表明:干凝胶经1000℃煅烧2h后得到了分散性良好的Al2O3粉体,粒径大约为50~ 80 nm.随着MgO掺杂量的增加,Al2O3陶瓷的相对密度、介电常数以及Q·f值都呈先增大后减小的趋势;随着温度的升高,烧结体的相对密度不断增大.当烧结温度为1500℃,MgO含量为0.5wt;时,Al2O3陶瓷的综合性能较好:相对密度为91.52;,介电常数和Q·f值达到最大值分别为9.46,19862 GHz.  相似文献   

17.
报道了一种用硝酸铝和碳酸铵以及尿素反应制备球形纳米α-Al2O3粉体的便捷方法.通过X射线粉末衍射、差热分析和扫描电镜对产物进行表征观察,结果显示,用这种方法所合成的前驱体为2~6μm鹅卵石形状的氢氧化铝.前驱体再经1200℃煅烧2 h得到直径为200 nm左右的孪生球形纳米氧化铝粉体.在此过程中,尿素起到了调节形貌的作用.  相似文献   

18.
以微孔α-Al2O3瓷板为支撑体,通过负载晶种水热反应合成了NaA沸石分子筛膜,利用XRD和FESEM表征了膜的相组成及微观结构,比较研究了动态和静态两种晶化体系对分子筛成膜的影响机制.将Na2SiO3·9H2O、NaAlO2和去离子水按n(Na2O):n(SiO2):n(Al2O3):n(H2O)= 3:2:1:148配制溶液,于95 ℃水热反应2 h制得晶种;再用Na2SiO3·9H2O、Al2(SO4)3·18H2O、NaOH及去离子水作起始物,按nNa2O:nSiO2:nAl2O3:nH2O=7.5:2:1:600配制膜晶化液,分别将负载晶种的支撑体置于动态(190 r/min搅动)和静态的晶化液中,于97 ℃下晶化4 h合成NaA沸石分子筛膜.结果表明:静态体系形成的膜主要由晶种和分子筛晶粒沉积构成,结构疏松且缺陷较多;而动态体系形成的膜则是由晶种交织生长而成,膜层薄、结晶度高、均匀连续,且成膜过程易于有效控制.  相似文献   

19.
以硫酸铝铵和碳酸氢铵为主要原料,采用沉淀法制备纳米碳酸铝铵(AACH)前驱体,通过碳酸铝铵热分解制备α-Al2O3,并利用X射线衍射(XRD),透射电镜(TEM)对前驱体及其煅烧产物的物相和形貌进行表征.研究表明通过添加氯化铵能够降低α-Al2O3的相变温度,并且随着加入量的增加,颗粒粒径减小,分散性改善.加入10;氯化铵的前驱体在1150 ℃下煅烧1 h后可以得到分散性较好的纳米α-Al2O3颗粒.  相似文献   

20.
BaTiO3-Nb2O5-Fe2O3陶瓷介电性能的研究   总被引:1,自引:1,他引:0  
利用传统方法制备了BaTiO3-Nb2O5-Fe2O3(BTNF)陶瓷,采用X射线衍射仪、电容测试仪、电滞回线测量仪等测试手段研究了不同添加剂(Fe2O3、Co2O3、Nb2O5)对陶瓷晶体结构、介电性能及铁电性的影响.结果表明:Nb2O5是施主掺杂,易引起晶格畸变,使四方率增大;而Fe2O3为受主掺杂,其可提高氧空位浓度,促进BaTiO3陶瓷晶粒生长.同时掺杂Fe2O3、Nb2O5时,可以相互补偿.当Fe2O3浓度约为0.15;摩尔分数,Nb2O5浓度为0.79;摩尔分数时,陶瓷的介电常数达到4443,温度特性≤±10;,可以满足Y5P瓷料的要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号