首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Organotin-mediated regioselective protection has been extensively used in organic synthesis for many years. However, the mechanistic origin of the resulting regioselectivity is still not clear. By the comparison of the steric and stereoelectronic effects controlling the geometry of five-membered rings formed from neighboring group participation, from intramolecular acyl group migration, or from orthoester transesterification on pyranoside rings, a theory on the pattern resulting from the reaction with dibutyltin oxide is presented. It is thus suggested that the regioselectivity of organotin-mediated protection is controlled by analogous steric and stereoelectronic effects as in neighboring group participation and acyl group migration, mainly dependent on the stereoelectronic effects of the pyranoside itself, and not related to complex stannylene structures. An organotin protection mechanism is also suggested, emanating from steric and stereoelectronic effects, nucleophilicity, and organotin acyl migration.  相似文献   

2.
Collagen model peptides (CMPs) serve as tools for understanding stability and function of the collagen triple helix and have a potential for biomedical applications. In the past, interstrand cross-linking or conformational preconditioning of proline units through stereoelectronic effects have been utilized in the design of stabilized CMPs. To further study the effects determining collagen triple helix stability we investigated a series of CMPs containing synthetic diproline-mimicking modules (ProMs), which were preorganized in a PPII-helix-type conformation by a functionalizable intrastrand C2 bridge. Results of CD-based denaturation studies were correlated with calculated (DFT) conformational preferences of the ProM units, revealing that the relative helix stability is mainly governed by an interplay of main-chain preorganization, ring-flip preference, adaptability, and steric effects. Triple helix integrity was proven by crystal structure analysis and binding to HSP47.  相似文献   

3.
Collagen model peptides (CMPs) serve as tools for understanding stability and function of the collagen triple helix and have a potential for biomedical applications. In the past, interstrand cross‐linking or conformational preconditioning of proline units through stereoelectronic effects have been utilized in the design of stabilized CMPs. To further study the effects determining collagen triple helix stability we investigated a series of CMPs containing synthetic diproline‐mimicking modules (ProMs), which were preorganized in a PPII‐helix‐type conformation by a functionalizable intrastrand C2 bridge. Results of CD‐based denaturation studies were correlated with calculated (DFT) conformational preferences of the ProM units, revealing that the relative helix stability is mainly governed by an interplay of main‐chain preorganization, ring‐flip preference, adaptability, and steric effects. Triple helix integrity was proven by crystal structure analysis and binding to HSP47.  相似文献   

4.
An improved synthesis of 2'-deoxy-2'-fluoro-5-methyl-4'-thioarabinouridine (4'S-FMAU) is described. Participation of the 3'-O-benzoyl protecting group in the thiosugar precursor influenced the stereochemistry of the N-glycosylation reaction in nonpolar solvents, permitting a higher beta/alpha ratio than previously observed for similar Lewis acid catalyzed glycosylations. Conformational analysis of the nucleoside using 3JHH and 3JHF NMR coupling constants together with the PSEUROT program showed that it adopted a predominantly northern conformation in contrast to 2'-deoxy-2'-fluoro-5-methylarabinouridine (FMAU), whose PSEUROT conformational analysis is presented here for the first time, which showed a dominantly southeast conformation. The sharp conformational switch attained by replacing the ring heteroatom is attributed to a decrease in relevant steric and stereoelectronic effects.  相似文献   

5.
Molecular design strategies that profit from the intrinsic stereoelectronic and electrostatic effects of fluorinated organic molecules have mainly been restricted to bio-organic chemistry. Indeed, many fluorine conformational effects remain academic curiosities with no immediate application. However, the renaissance of organocatalysis offers the possibility to exploit many of these well-described phenomena for molecular preorganization. In this minireview, we highlight examples of catalyst refinement by introduction of an aliphatic C-F bond which functions as a chemically inert steering group for conformational control.  相似文献   

6.
聂小平  叶秀林 《有机化学》1999,19(2):109-120
通过分析竞争反应的过渡态在构象上能量的高低,探讨构象效应(立体电子效应和位阻效应)对一些有机反应的立体性的影响;而立体电子效应和位阻效应与反应机制,反应物的结构-构象和反应条件等都有关系,最终能影响反应产物的立体结构。阐明其中的缘由可有助于正确预测产物的结构及选择可行的合成线路。  相似文献   

7.
Oxazolidinone-substituted enecarbamates represent a mechanistically rich system for the study of stereoelectronic, steric, and conformational effects on stereoselectivity and mode selectivity in (1)O(2) [2 + 2] and ene reactions. Photooxygenation of these enecarbamates with (1)O(2) leads to diastereomerically pure dioxetanes that decompose to yield an oxazolidinone carbaldehyde and one of the two enantiomers of methyldesoxybenzoin in enantiomeric excess. Stereoselectivity originates at the allylic stereocenter, a result supported by quenching studies, computational analysis, and deuterium solvent isotope effects. [reaction: see text]  相似文献   

8.
Regioselectivity of alkylidene carbene-mediated C-H insertion was explored utilizing electronic, conformational, steric, and stereoelectronic effects. Relying on these factors, highly regio- and chemoselective carbene insertion reaction of C-H bonds in different environments could be obtained. The observed selectivity clearly indicates that an electronic effect plays a more important role than steric effect. In general, C-H bonds in conformationally rigid cyclic environments are less reactive than those in acyclic systems toward carbene insertion, and in this situation, a competing intermolecular reaction between alkylidene carbene and trimethylsilyldiazomethane led to the formation of allenylsilanes. The formation of allenylsilane becomes more favorable as the concentration of reaction becomes higher, as well as the C-H bonds undergoing insertion becomes electronically and conformationally deactivated.  相似文献   

9.
The anomeric effect (the tendency of heteroatomic substituents adjacent to a heteroatom within the cyclohexane ring to prefer the axial orientation instead of the sterically less hindered equatorial position) is traditionally explained through either the dipole moment repulsion or the hyperconjugation effect. In this work, by employing our recent work in density functional steric analysis, we provide a novel two-component explanation, which is consistent with the common belief in chemistry that the effect has a stereoelectronic origin. With α-D-glucopyranose as the prototype, we systematically explore its conformational space and generate 32 isomers, leading to a total of 80 axial-equatorial conformation pairs. The energy difference analysis of these pairs shows that while statistically speaking the tendency is valid, the anomeric effect is not always true and can be violated. Three energy components, exchange-correlation, classical electrostatic, and density functional steric, are found to be directly proportional to the total energy difference between axial and equatorial isomers. We also found that the total dipole moment change, not the hyperconjugation effect, is a reasonable indicator of the total energy difference. However, all these correlations alone are not strong enough to provide a compellingly convincing explanation for the general validity of the effect. With the help of strong correlations between energy components, an explanation with two energy components, steric and electrostatic, was proposed in this work. We show that the axial-equatorial energy difference in general, with the anomeric effect as a special case, is dictated by two factors of the stereoelectronic origin, steric hindrance and classical electrostatic interactions, synchronously working together. Another explanation in terms of exchange-correlation and electrostatic interactions has also been obtained in this work.  相似文献   

10.
Conformational analyses for acetyl and formyl ligands bound to transition metal auxiliaries reveal that, after considering primary stereoelectronic effects where appropriate, the conformations adopted by acetyl ligands are determined primarily by steric interactions while the corresponding formyl conformations are determined primarily by dipolar and electrostatic forces. No evidence for secondary stereoelectronic effects is apparent.  相似文献   

11.
Jeong LS  Tosh DK  Kim HO  Wang T  Hou X  Yun HS  Kwon Y  Lee SK  Choi J  Zhao LX 《Organic letters》2008,10(2):209-212
The first synthesis of 4'-selenonucleosides was achieved using a Pummerer-type condensation as a key step. All stereoelectronic effects shown in 4'-oxonucleosides were overwhelmed by the size of selenium and steric interactions, driving the conformation to the C2'-endo/ C3'-exo twist (Southern) conformation.  相似文献   

12.
Conformations of the title compounds were examined using DFT calculations and NBO analysis in order to find the origins of their conformational preferences. The most stable conformations were TBC and TCBtype-1 for the 2,4- and 3,5-benzodioxonine derivatives, respectively. In both of these conformations the acetal moiety adopts the g+/-g+/- geometry. The NBO analysis yielded values of the stabilization energy associated with the stereoelectronic nO --> sigmaC-O* interactions that were highest for conformations other than the global minima. Conformers displaying the strongest interactions followed different patterns of atom arrangement within the acetal moiety, namely g+g-, and those in which one or both of the torsion angles within the C-O-C-O-C segment were close to 90 degrees . Steric repulsion caused by alkyl substituents at the anomeric carbon was found to influence the strength of the nO --> sigmaC-O* stabilization through modification of bond lengths and torsion angles. The adopted ground-state conformations result from accommodation of steric repulsions and stabilizing stereoelectronic interactions. It was shown that DFT calculations of conformational preferences of acetals together with GIAO prediction of 13C chemical shifts should be a useful methodology for studies on conformation and conformational equilibria of acetals in solution.  相似文献   

13.
Thermochemical data, and in particular the enthalpies of formation of oxygen- and sulfur-containing six-membered heterocycles provide essential information on the factors responsible for the contrasting behavior (structural, conformational and reactivity) between these types of compounds. A proper understanding of the experimental observations requires theoretical modeling in order to confirm the relative importance of the steric, electronic, electrostatic and stereoelectronic interactions that are responsible of the enthalpies of formation for the heterocyclic compounds of interest.  相似文献   

14.
The stereochemical course of the singlet-oxygen ene reaction with acyclic olefins may be controlled if in the substrate conformational fixation (1,3-allylic strain) an allyl-ic substituent for interaction with the attacking oxygen enophile aligns. Various substrates were chosen to elucidate the features of the olefin that are necessary to control the sense (threo versus erythro) and the extent of the ii-facial preference of the singlet-oxygen attack. Depending on the electronic properties of the double bond and the nature of the allylic substituent, threo or erythro selectivity may be imposed through hydrogen bonding, electrostatic and steric effects and stereoelectronic alignment. Such directing properties, especially that of the hydroxy group, were also confirmed in the other reaction modes of singlet oxygen, namely the [4+2] cycloaddition to chiral naphthylenic alcohols and the [2+2] cycloaddition to an adamantylidene-substituted allylic alcohol. The syntheses of the natural products Merucathin and Iso-dihydromahubanolide B are two examples in which such stereocontrolled photooxygenations have been used as key steps to build up the required chirality diastereose-lectively.  相似文献   

15.
Conformational preferences for 2-substituted methylenecyclohexanes were determined using (3) J H 2 H 3 spin-spin coupling constants, while stereoelectronic interactions were obtained by means of theoretical calculations and NBO analysis. The conformational equilibrium of compounds studied can be represented by their axial and equatorial conformers, the axial conformers being the most stable form in polar and nonpolar solvents. These conformational preferences were attributed to the hyperconjugative interactions between the pi C-C-->sigma* C-Xax. and sigma C-H-->sigma* C-Xax. orbitals, and the repulsive steric interaction observed between sigma C-H-->n Xeq..  相似文献   

16.
The synthesis of 1,2,8,8a-tetrahydrocyclopropa[c]pyrrolo[3, 2-e]indol-4(5H)-one (CPI), the parent CC-1065 and duocarmycin SA alkylation subunit, is detailed. The parent CPI alkylation subunit lacks the C7 methyl substituent of the CC-1065 alkylation subunit and the C6 methoxycarbonyl group of duocarmycin SA, and their examination permitted the establishment of the impact of these natural product substituents. The studies revealed a CPI stability comparable to the CC-1065 alkylation subunit but which was 6x more reactive than the (+)-duocarmycin SA alkylation subunit, and it displayed the inherent reaction regioselectivity (4:1) of the natural products. The single-crystal X-ray structure of (+)-N-BOC-CPI depicts a near identical stereoelectronic alignment of the cyclopropane accounting for the identical reaction regioselectivity and a slightly diminished vinylogous amide conjugation relative to (+)-N-BOC-DSA suggesting that the stability distinctions stem in part from this difference in the vinylogous amide as well as alterations in the electronic nature of the fused pyrrole. Establishment of the DNA binding properties revealed that the CPI-based agents retain the identical DNA alkylation selectivities of the natural products. More importantly, the C6 methoxycarbonyl group of duocarmycin SA was found to increase the rate (12-13x) and efficiency (10x) of DNA alkylation despite its intrinsic lower reactivity while the CC-1065 C7 methyl group was found to slow the DNA alkylation rate (4x) and lower the alkylation efficiency (ca. 4x). The greater DNA alkylation rate and efficiency for duocarmycin SA and related analogues containing the C6 methoxycarbonyl is proposed to be derived from the extended length that the rigid C6 methoxycarbonyl provides and the resulting increase in the DNA binding-induced conformational change which serves to deconjugate the vinylogous amide and activate the alkylation subunit for nucleophilic attack. The diminished properties resulting from the CC-1065 C7 methyl group may be attributed to the steric impediment this substituent introduces to DNA minor groove binding and alkylation. Consistent with this behavior, the duocarmycin SA C6 methoxycarbonyl group increases biological potency while the CC-1065 C7 methyl group diminishes it.  相似文献   

17.
Glycals and 4-deoxypentenosides (4-DPs), unsaturated pyranosides with similar structures and reactivity profiles, can exhibit a high degree of stereoselectivity upon epoxidation with dimethyldioxirane (DMDO). In most cases, the glycals and their corresponding 4-DP isosteres share the same facioselectivity, implying that the pyran substituents are largely responsible for the stereodirecting effect. Fully substituted dihydropyrans are subject to a "majority rule", in which the epoxidation is directed toward the face opposite to two of the three groups. Removing one of the substituents has a variable effect on the epoxidation outcome, depending on its position and also on the relative stereochemistry of the remaining two groups. Overall, we observe that the greatest loss in facioselectivity for glycals and 4-DPs is caused by removal of the C3 oxygen, followed by the C5/anomeric substituent, and least of all by the C4/C2 oxygen. DFT calculations based on polarized-π frontier molecular orbital (PPFMO) theory support a stereoelectronic role for the oxygen substituents in 4-DP facioselectivity, but less clearly so in the case of glycals. We conclude that the anomeric oxygen in 4-DPs contributes toward a stereoelectronic bias in facioselectivity whereas the C5 alkoxymethyl in glycals imparts a steric bias, which at times can compete with the stereodirecting effects from the other oxygen substituents.  相似文献   

18.
Proline residues are critical structural elements in proteins, defining turns, loops, secondary structure boundaries, and polyproline helices. Control of proline conformation therefore may be used to define protein structure and stability. 4-Substituted proline derivatives may be used to control proline ring pucker, which correlates with protein main chain conformation. To examine the use of proline conformational restriction to tune globular protein stability, a series of peptides derived from the trp cage miniprotein was synthesized. Proline at residue 12 of the trp cage miniprotein, which adopts a Cgamma-exo ring pucker in the NMR structure, was replaced with 4-substituted proline derivatives, including 4R derivatives favoring a Cgamma-exo ring pucker and 4S derivatives favoring a Cgamma-endo ring pucker. Eight trp cage peptides were synthesized, five of which included residues that are not commercially available, without requiring any solution phase chemistry. Analysis of the trp cage peptides by circular dichroism and NMR indicated that the structure and stability of the trp cage miniprotein was controllable based on the conformational bias of the proline derivative. Replacement of Pro12 with 4S-substituted proline derivatives that favor the Cgamma-endo ring pucker destabilized the trp cage, while replacement of Pro12 with 4R-substituted proline derivatives that favor a Cgamma-exo ring pucker resulted in increased alpha-helicity and thermal stability of the trp cage. The most stable trp cage derivatives contained benzoates of 4R-hydroxyproline, which also exhibited the most pronounced stereoelectronic effects in TYProxN model peptides. Overall, the stability of the trp cage was tunable by over 50 degrees C depending on the identity of the proline side chain at residue 12.  相似文献   

19.
Collagen is the most abundant protein in animals. Natural collagen consists of a triple helix of (Xaa-Yaa-Gly)n chains, in which the Xaa and Yaa residues are often l-proline. Here, a (2S,4S)-4-fluoroproline (flp) residue is shown to be greatly stabilizing in the Xaa position (but destabilizing in the Yaa position). In contrast, a (2S,4R)-4-fluoroproline (Flp) residue is shown to be greatly destabilizing in the Xaa position (but stabilizing in the Yaa position). The dichotomous effect of the diastereomers appears to arise from a gauche effect, which alters pyrrolidine ring pucker and hence properly (or improperly) preorganizes main-chain dihedral angles. Thus, the rational use of stereoelectronic effects can enhance the conformational stability of a protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号