首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
A radiation dynamic model is developed for a post-breakdown stage of a laser induced plasma expanding into vacuum. The model describes the plasma formed on a small solid particle, which is completely vaporized by a laser. The symmetry of the expanding plasma is spherical. The time frame for the applicability of the model is somewhat between a hundreds of nanoseconds, after the laser pulse is terminated, and a few microseconds, when the plasma ceases to emit. The model is based on a system of gas dynamic equations coupled with the equation of radiative transfer. Local thermodynamic equilibrium is assumed, allowing the application of the collision-dominated plasma model as well as standard statistical distributions. Calculations are performed for a dual SiC system, although calculations for any arbitrary number of system's components are permitted. The model has two implications. First, an analytical expression for the plasma radiation dynamics is obtained by artificially setting the initial conditions. Second, from experimentally measured plasma parameters, information is deduced about the initial state of the plasma. The main model input parameters are the total number and distribution of plasma species and the initial distribution of temperature. Some of the other model inputs, such as the speed of the plasma front and the temperature profile across the plasma can be directly measured, thus providing valuable experimental feedback to the model. The model outputs are the evolution of plasma temperature, the spatial and temporal distributions of atoms, ions and electron number densities and the evolution of the plasma spectrum in a desirable spectral window (e.g. 280–290 nm for the chosen in this work SiC system).  相似文献   

6.
Journal of Radioanalytical and Nuclear Chemistry - Due to increasing concern about environmental radiological protection, radioactivity concentrations of 226Ra, 232Th, 40K and 137Cs in surface soil...  相似文献   

7.
The tungsten plasma flash X-ray generator is useful in order to perform high-speed enhanced K-edge angiography using cone beams because K-series characteristic X-rays from the tungsten target are absorbed effectively by gadolinium-based contrast media. In the flash X-ray generator, a 150 nF condenser is charged up to 80 kV by a power supply, and flash X-rays are produced by the discharging. The X-ray tube is a demountable diode, and the turbomolecular pump evacuates air from the tube with a pressure of approximately 1 mPa. Since the electric circuit of the high-voltage pulse generator employs a cable transmission line, the high-voltage pulse generator produces twice the potential of the condenser charging voltage. At a charging voltage of 80 kV, the estimated maximum tube voltage and current were approximately 160 kV and 40 kA, respectively. When the charging voltage was increased, the characteristic X-ray intensities of tungsten Kα lines increased. The Kα lines were clean, and hardly any bremsstrahlung rays were detected. The X-ray pulse widths were approximately 110 ns, and the time-integrated X-ray intensity had a value of approximately 0.35 mGy at 1.0 m from the X-ray source with a charging voltage of 80 kV. Angiography was performed using a film-less computed radiography (CR) system and gadolinium-based contrast media. In angiography of non-living animals, we observed fine blood vessels of approximately 100 μm with high contrasts.  相似文献   

8.
The features of inductively coupled plasma– mass spectrometry (ICP-MS) that make it unique also make possible applications in biological chemistry and biomedical research that would be otherwise difficult or impossible. High sensitivity, characterized spectral interferences, rapid mass scanning, and individual isotope measurements are now combined with sophisticated sample preparation, separations, or stable isotope additions to achieve rapid semi-quantitative analysis, element speciation, and high accuracy. The semi-quantitative analysis of various materials, the separation and detection of macromolecules in blood and other tissues, and tracking of stable isotopes added either purposely or inadvertently to children are important applications of ICP-MS. Current functional limitations and obstacles and potential development areas also are examined.  相似文献   

9.
The features of inductively coupled plasma - mass spectrometry (ICP-MS) that make it unique also make possible applications in biological chemistry and biomedical research that would be otherwise difficult or impossible. High sensitivity, characterized spectral interferences, rapid mass scanning, and individual isotope measurements are now combined with sophisticated sample preparation, separations, or stable isotope additions to achieve rapid semi-quantitative analysis, element speciation, and high accuracy. The semi-quantitative analysis of various materials, the separation and detection of macromolecules in blood and other tissues, and tracking of stable isotopes added either purposely or inadvertently to children are important applications of ICP-MS. Current functional limitations and obstacles and potential development areas also are examined.  相似文献   

10.
Polyaniline, a conducting polymer, is prepared by the oxidation of aniline with various oxidants. When using ammonium peroxydisulfate or hydrogen peroxide at high concentrations, the temperature may exceed boiling point of reaction mixture, which then explodes. This represents a safety hazard in the synthesis of polyaniline. Also polyaniline samples prepared in the solutions of nitric acid may spontaneously ignite or decompose during the characterization. The synthesis using the recommended protocol is safe.  相似文献   

11.
A solvent extraction system has been developed for the separation of172Lu from its long-lived172Hf parent. The parent-daughter pair in equilibrium is maintained in a solution of HDEHP, and the heavy lanthanide daughter is extracted into 9M HCl. The separation factor for this generator is approximately 104. The rare-earth activity so obtained is proposed for compound labelling research and animal biodistribution studies in nuclear medicine.  相似文献   

12.
A negative-ion-based neutral beam injector (N-NBI) has been constructed for JT-60U. The N-NBI is designed to inject 500 keV, 10 MW neutral beams using two ion sources, each producing a 500 keV, 22 A D ion beam. In the preliminary experiment using one ion source, a D ion beam of 13.5 A has been successfully accelerated with an energy of 400 keV (5.4 MW) for 0.12 s at an operating pressure of 0.22 Pa. This is the highest D beam current and power in the world. Co-extracted electron current was effectively suppressed to the ratio of Ie/ID < 1. The highest energy beam of 460 keV, 2.4 A, 0.44 s has also been obtained. To realize 1 MeV class NBI system for ITER (International Thermonuclear Experimental Reactor), demonstration of ampere class negative ion beam acceleration up to 1 MeV is an important mile stone. To achieve the mile stone, a prototype accelerator and a 1 MV, 1 A test facility called MeV Test Facility (MTF) were constructed. Up to now, an H ion beam was accelerated up to the energy of 805 keV with an acceleration drain current of 150 mA for 1 s in a five stage electrostatic multi-aperture accelerator.  相似文献   

13.
Because cerebrospinal fluid (CSF) is the biofluid which interacts most closely with the central nervous system, it holds promise as a reporter of neurological disease, for example multiple sclerosis (MScl). To characterize the metabolomics profile of neuroinflammatory aspects of this disease we studied an animal model of MScl-experimental autoimmune/allergic encephalomyelitis (EAE). Because CSF also exchanges metabolites with blood via the blood-brain barrier, malfunctions occurring in the CNS may be reflected in the biochemical composition of blood plasma. The combination of blood plasma and CSF provides more complete information about the disease. Both biofluids can be studied by use of NMR spectroscopy. It is then necessary to perform combined analysis of the two different datasets. Mid-level data fusion was therefore applied to blood plasma and CSF datasets. First, relevant information was extracted from each biofluid dataset by use of linear support vector machine recursive feature elimination. The selected variables from each dataset were concatenated for joint analysis by partial least squares discriminant analysis (PLS-DA). The combined metabolomics information from plasma and CSF enables more efficient and reliable discrimination of the onset of EAE. Second, we introduced hierarchical models fusion, in which previously developed PLS-DA models are hierarchically combined. We show that this approach enables neuroinflamed rats (even on the day of onset) to be distinguished from either healthy or peripherally inflamed rats. Moreover, progression of EAE can be investigated because the model separates the onset and peak of the disease.  相似文献   

14.
15.
16.
A new sensitive methodology for the determination of total reduced sulfur species in natural waters and acid volatile sulfides in sediments at low levels (μg L− 1) is described. Reduced sulfur species were separated from the water matrix in the form of H2S after reaction with hydrochloric acid in a commercial vapor generator coupled to an inductively coupled plasma quadrupole mass spectrometer (VG–ICP–QMS) equipped with a reaction cell. The method avoided the effect of polyatomic isobaric interferences at m/z 32 caused by 16O16O+ and 14N18O+ through the elimination of the aqueous matrix, a source of oxygen. By introducing a mixture of helium and hydrogen gases into the octopole reaction cell, a series of ion-molecule reactions were induced to reduce the interfering polyatomic species. Operating conditions of the octopole reaction cell system and the analyzer were optimized to get the best signal to background ratio for 32S; a full factorial 23 experimental design was developed in order to evaluate which variables had a significant effect and a simplex methodology was applied to find the optimum conditions for the variables. The new method was evaluated by comparison to the standard potentiometric method. The analytical methodology developed was applied to the analysis of reduced sulfur species in natural waters and acid volatile sulfides in sea sediments.  相似文献   

17.
18.
金绿宝石结构稳定,常规敞开酸溶、密闭酸溶、微波消解三种前处理方法并不能将其完全分解,测定结果偏低。本文采用碳酸钠-硼酸混合熔剂进行熔融,样品分解完全,建立了电感耦合等离子体质谱法(ICP-MS)测定金绿宝石中16种痕量稀土元素的分析方法。选择丰度高、干扰小的同位素、动能歧视碰撞池(KED)模式及干扰系数校正法消除质谱干扰,以185Re为内标元素及样品稀释降低基体干扰。实验表明:各稀土元素的校准曲线相关系数r值在0.9991~0.9998之间,方法检出限为0.0001~0.0134 μg/g,定量限为0.0005~0.0670 μg/g。采用国家标准物质GBW07151验证方法的精密度,计算出相对标准偏差(RSD, n=7)在1.3%~4.6%之间,并将此方法用于金绿宝石实际样品中稀土元素的测定,RSD为0.9%~3.2%,加标回收率为94%~104%,符合国家地质矿产行业标准,结果稳定、可靠。  相似文献   

19.
Previously it was generally assumed that high energy radiation could only initiate radical polymerization in solutions of monomers. However, examples of radiation-induced polymerization have recently become known that proceed via an ionic mechanism. Thus, solutions of a monomer can be polymerized ionically, preferably in the presence of a solid, at low temperatures. Suprisingly, this may also be accomplished with ultra-pure, mainly anhydrous systems, even at room temperature. The nature of the ions has not yet been fully elucidated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号