首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Tripamide is a drug widely used in clinical practice for the treatment of hypertension and edema. This work evaluated a screening method for Tripamide and its urinary metabolites in human urine, using high-performance liquid chromatography diode-array detection (HPLC/DAD). Identification of these metabolites was investigated by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ESI-MS/MS) after dosing with 15 mg Tripamide. Acid hydrolysis showed that Tripamide is conjugated in the body. Two suspected metabolites were detected by HPLC/DAD. HPLC/ESI-MS/MS analysis suggested that these metabolites were probably hydroxylated together with loss of the -NH(2) group and dehydrogenation. These results will be useful in confirmation methods for Tripamide in doping control.  相似文献   

5.
High-performance anion-exchange chromatography (HPAC) was used for the determination of aminosaccharides in microbial polymers, chitin, animal waste, sewage sludge, plant residues and soil. The aminosaccharides, galactosamine, mannosamine and glucosamine were separated on a strong anion-exchange column with 1OmM sodium hydroxide as the eluent and determined by pulsed amperometric detection (PAD). The HPAC-PAD methodology was compared with high-performance liquid chromatography (HPLC) with refractive index detection (RI) in terms of selectivity and sensitivity for aminosaccharides. The results indicate that HPAC-PAD required less sample preparation, and was more precise and nearly two orders of magnitude more sensitive than HPLC-RI. HPAC-PAD was not subject to matrix interferences and was highly selective for aminosaccharides. More than 3% of the total nitrogen in alfalfa, and 20% of that in straw, was found to be present as aminosaccharides.  相似文献   

6.
7.
A reversed-phase HPLC method has been developed for determination of twelve intact glucosinolates—glucoiberin, glucocheirolin, progoitrin, sinigrin, epiprogoitrin, glucoraphenin, sinalbin, gluconapin, glucosibarin, glucotropaeolin, glucoerucin, and gluconasturtiin—in ten traditional Chinese plants. The samples were extracted with methanol and the extracts were cleaned on an activated Florisil column. A mobile phase gradient prepared from methanol and 30 mmol L−1 ammonium acetate at pH 5.0 enabled baseline separation of the glucosinolates. Glucosinolate detection was confirmed by quadrupole time-of-flight tandem mass spectrometric analysis in negative-ionization mode. Detection limits ranged from 0.06 to 0.36 μg g−1 when 5 g of dried plant was analyzed. Recoveries of the glucosinolates were better than 85% and precision (relative standard derivation, n = 3) ranged from 5.3 to 14.6%. Analysis of the glucosinolates provided scientific evidence enabling differentiation of three pairs of easily confused plants. Figure Glucosinolates Analysis for the Differentiation of Easily-Confusing Herbs  相似文献   

8.
9.
Summary Acid hydrolysis (0.25M H2SO4) coupled with enzyme catalysis (pectolyase and β-D-glucuronidase) were employed to extract galacturonic and glucuronic acids from microbial polysaccharides, plant residues, animal wastes, sewage sludge and soil. The glycuronic acids were separated by high-performance anion chromatography (HPAC) on a strong anion-exchange column using 0.1M sodium hydroxide with 0.25M sodium acetate as the mobile phase and determined by pulsed amperometric detection (PAD). HPAC-PAD was found to be superior to high-performance liquid chromatography with ultra-violet (UV) detection in terms of resolution and sensitivity of glycuronic acids. HPAC-PAD was not subject to interferences present with low UV detection (210 nm) and was highly selective for glycuronic acids. Enzymatic hydrolysis after treatment with mild acid (0.25M H2SO4) released galacturonic acids from orange peel and pectin, while glucuronic acid was released from Acacia powder. Large amounts of glycuronic acids were also extracted from plant materials. Low levels of uronic acids were detected in poultry manure, sewage sludge and organic-amended soils.  相似文献   

10.
An electrochemical detection method for short-chain saturated and unsaturated aliphatic aldehydes separated by liquid chromatography in moderately acidic medium is described. A triple-step waveform of the potentials applied to the polycrystalline platinum electrode, is proposed for sensitive detection of aliphatic aldehydes in flowing streams avoiding tedious pre- or post-column derivatization and/or cleanup procedures. The influences of the perchloric acid concentration and dissolved oxygen in the mobile phase, on the amperometric and chromatographic performance were evaluated and considered in terms of sensitivity and selectivity. Under the optimised experimental conditions (i.e., deoxygenated 50mM HClO4) the proposed analytical method allowed detection limits between 0.2 microM for acrolein and 2.5 microM for valeraldehyde. Regression analysis of calibration data indicates that responses for all investigated compounds are linear over about 2 orders of magnitude above the LOD, with correlation coefficients >0.990. The method was successfully applied to the determination of formaldehyde, acetaldehyde, propionaldehyde and acrolein in real matrices such as spiked water and red wines with good mean recoveries (81-97%).  相似文献   

11.
A method for the quantification of clindamycin in animal plasma using high-performance liquid chromatography combined with electrospray ionization mass spectrometry (LC/ESI-MS/MS) is presented. Lincomycin is used as the internal standard. The sample preparation includes a simple deproteinization step with trichloroacetic acid. Chromatographic separation is achieved on an RP-18 Hypersil column using gradient elution with 0.01 M ammonium acetate and acetonitrile as mobile phase. Good linearity was observed in the range 0-10 microg ml(-1). The limit of quantification of the method is 50 ng ml(-1) and the limit of detection is 1.3 ng ml(-1). The method was shown out to be of use for pharmacokinetic studies of clindamycin formulations in dogs.  相似文献   

12.
We determined the minute amount of non-polar ginsenosides in red ginseng with a reversed-phase high-performance liquid chromatography-pulsed amperometric detection (RP-HPLC-PAD) method. Non-polar ginsenosides efficiently extracted by ethyl acetate were well separated in 40 min using a water–acetonitrile gradient eluent and detected by PAD under NaOH alkaline conditions. The ginsenoside detection limits (S/N = 3) were 0.03–0.10 ng. The coefficients of linear regression were 0.9972–0.9990. Intra- and inter-day precision (RSDs) was less than 8.34% and average recovery was 98.06–102.73%. The total amount of non-polar ginsenosides in hairy root of red ginseng was slightly higher than in the main root.  相似文献   

13.
A new method providing enhanced sensitivity for the analysis of oligonucleotides using an on-line coupled system of reversed-phase high-performance liquid chromatography (RP-HPLC) and electrospray ionization ion-trap mass spectrometry (ESI-MS) has been developed. The presented method allows the use of the standard gradient elution of 0.1 M triethylammonium acetate (TEAA) buffer (adjusted to pH 7.0 with acetic acid) and acetonitrile that is typically used for the separation of oligonucleotides in RP-HPLC. An added feature of this method is the ability to combine and mix additional 0.1 M imidazole in acetonitrile after the separation column for improved ESI-MS performance. This is similar to the post-column reaction method in liquid chromatography (LC) and the liquid sheath flow method in LC/ESI-MS, both of which offer the advantage of not compromising the chromatographic separation conditions. The application of this new method is demonstrated to afford improved sensitivity for the analysis of oligonucleotides (20-50 mer) via on-line coupled HPLC/ESI-MS analysis and purification systems.  相似文献   

14.
A method for the determination of propamocarb in vegetables with liquid chromatography-electrospray ionisation mass spectrometry (LC-ESI-MS) was developed. The performance of a polymer-based analytical LC column for the separation was investigated. Residues of propamocarb were extracted from the matrix with methanol. Subsequently, the extract was directly injected into the LC-MS system, without any additional concentration or cleanup procedures. Separation of propamocarb from the matrix components was achieved on a polymethacrylate-based analytical column. Propamocarb was concurrently detected with electrospray ionisation mass spectrometry in the selected ion monitoring mode and two-stage full scan MS application. Quantitation was done with matrix-matched calibration standards of propamocarb. Unambiguous confirmation was achieved by comparison of the full scan product ion mass spectrum of the chromatographic peak in the sample with the spectrum of a standard solution of propamocarb at the same retention time. The analytical performance of the method was validated for five relevant matrices, spiking propamocarb at fortification levels from 0.05 to 15.0 mg kg(-1). This covers the range of maximum residue limits in agricultural commodities, stated in the Dutch national legislation. The mean recovery of propamocarb was better than 90% with a precision of less than 10% in both scanning applications. As could be concluded from the calibration curve and matrix background levels, observed in blank control samples, the estimated limit of detection was 25 microg kg(-1) for the two-stage full scan MS application. The method has been applied in a survey of 285 samples of lettuce, radish, leek, and cabbage for the presence of residues of propamocarb. In 50% of the samples analysed, a residue of propamocarb was detected.  相似文献   

15.
High-performance anion-exchange chromatography (HPAEC) coupled with pulsed amperometric detection (PAD) under alkaline conditions (pH 9-13) separates aminosaccharides, neutral saccharides and glycuronic acids based upon their molecular size, saccharide composition and glycosidic linkages. Carbohydrates were extracted by utilizing 0.5 M H2SO4 (neutral monosaccharides), 0.25 M H2SO4 coupled with enzyme catalysis (glycuronic acids) and 3 M H2SO4 (aminosaccharides). Solid-phase extraction with strong cation and strong anion resins was used to partition the cationic aminosaccharides and anionic glycuronic acids and to deionize acid extracts for neutral saccharides. Separation was conducted on a medium-capacity anion-exchange column (36 mequiv.) utilizing sodium hydroxide (5-200 mM and sodium acetate (0-250 mM) as the mobile phase. The saccharides were detected by oxidation at a gold working electrode with triple-pulsed amperometry. HPAEC-PAD was found superior to high-performance liquid chromatography with refractive index (RI) detection for neutral monosaccharides and aminosaccharides and to low-wavelength UV detection for glycuronic acids in terms of resolution and sensitivity. HPAEC-PAD was not subject to interferences as was the case for low UV detection (210 nm) or RI analyses and was highly selective for mono- and aminosaccharides and glycuronic acids. The use of HPAEC-PAD was applied for the determination of the saccharide composition of organic materials (plant residues, animal wastes and sewage sludge), microbial polymers and soil.  相似文献   

16.
17.
In this paper, a sensitive, simple and direct method for simultaneous determination of glucose, ribose, isomaltose and maltose in serum sample by high-performance anion-exchange chromatography coupled with integrated pulsed amperometric detection was developed. The four target analytes were easily and completely separated on an anion-exchange column at a flow-rate of 0.25 mL/min by binary step gradient elution in about 16 min and the two eluents were deionized water and 500 mM sodium hydroxide, respectively. The separated four analytes were detected directly by using a gold electrode and quadruple-potential waveform integrated pulsed amperometry without derivatization. Under the optimized conditions, when the injection volume was 25 microL, the detection limits (signal-to-noise ratio equal to 3) for glucose, ribose, isomaltose and maltose were 0.92, 7.50, 12.9 and 10.3 ng/mL, respectively. The calibration graphs of peak area for the four analytes were linear over two to three orders of magnitude with correlation coefficients greater than 0.998. R.S.D. of peak areas of the four analytes for five determinations were no more than 5.6%. The analytical method had been applied to the determination of glucose, ribose, isomaltose and maltose in real serum samples and good results with low relative standard deviation not more than 5.3% were obtained. The accuracy of the proposed method was tested by recovery measurements on spiked samples and good recovery results (98.1-107.9%) were obtained.  相似文献   

18.
A congener-specific method based on high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ES-MS/MS) in the negative ion mode was developed for the analysis of hexabromocyclododecane (HBCDD). On a C(18) analytical column, with a methanol/water mobile phase, the alpha-isomer was completely resolved from the beta- and gamma-isomers while the beta- and gamma-isomers were sufficiently resolved at half their peak heights. The ES spray voltage strongly influenced the intensity of the ion signal. For MS, a source temperature of 500 degrees C and a collision energy of 50 eV were found to be optimum for the [M-H](-) to Br(-) transition. Run-to-run and day-to-day (n = 3) variability was minimal, with relative standard deviations of 2.6-4.1 and 2.4-4.4%, respectively. The limit of detection was 4-6 pg on-column. When applied to tissue samples from Lake Winnipeg fish both alpha- and gamma-isomers of HBCDD were found in low-ng/g (lipid corrected) concentrations.  相似文献   

19.
Gentamicin is a broad-spectrum aminoglycoside antibiotic widely used in veterinary medicine for the treatment of serious infections. The purpose of this study was to develop and validate a method to determine gentamicin residues in edible tissues of swine and calf. Extraction of gentamicin was performed using a liquid extraction with phosphate buffer containing trichloroacetic acid, followed by a solid-phase clean-up procedure on a CBA weak cation-exchange column. Tobramycin was used as the internal standard. After drying of the eluate, the residue was redissolved and further analyzed by reversed-phase liquid chromatography/electrospray ionization tandem mass spectrometry (MS/MS). Chromatographic separation of the internal standard tobramycin and the gentamicin components was achieved on a Nucleosil (5 microm) column using a mixture of 10 mM pentafluoropropionic acid in water and acetonitrile as the mobile phase. The gentamicin components C1a, C2 + C2a and C1 could be identified with the MS/MS detection, and subsequently quantified. The method was validated according to the requirements of the EC at the maximum residue limit (MRL) (100 ng g(-1) for muscle and fat, 200 ng g(-1) for liver and 1000 ng g(-1) for kidney), half the MRL and double the MRL levels. Calibration graphs were prepared for all tissues and good linearity was achieved over the concentration ranges tested (r > 0.99 and goodness of fit <10%). Limits of quantification of 25.0 ng g(-1) were obtained for the determination of gentamicin in muscle, fat, liver and kidney tissues of swine and calf, which correspond in all cases to at least half the MRLs. Limits of detection ranged between 0.5 and 2.5 ng g(-1) for the tissues. The within-day and between-day precisions (RSD) and the results for accuracy fell within the ranges specified. The method was successfully used for the determination of gentamicin in tissue samples of swines and calves medicated with gentamicin by intramuscular injection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号