首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apparent molar volumes V and heat capacities Cp, of NaCl, KCl, KNO3, AgNO3, KI, NaBPh4 and Ph4PCl have been measured in acetonitrile (AN)-water mixtures up to xAN=0.25 by flow densitometry and flow microcalorimetry. Limited data have also been obtained for NaF, LiCl and KBr up to x AN =0.15. Single ion volumes and heat capacities of transfer were obtained using the assumption tX(PH4P+) = tX(BPh4-) where X=V or C p and tX is the change in X for a species on transfer from H2O to AN-H2O mixtures. Volumes and heat capacities for simple salts show relatively little dependence on solvent composition. However, tX for simple ions show more pronounced variations, exhibiting at least one extremum. These extrema are similar to but much less pronounced than those derived previously for ions in t-butanol-water mixtures. Surprisingly little correlation is found between the present data and other thermodynamic transfer functions. This is attributed to the predominance of ion-solvent over solvent-solvent interactions in AN-H2O solutions. tV and tCp, for the silver ion differ markedly from those of the alkali metal ions as a result of the well-known specific interaction between Ag+ and AN.  相似文献   

2.
Experimental data for aqueous solutions of 6,6,9-trimethyladenine at concentrations from 0.006 to 0.020 molal is provided from differential scanning adiabatic calorimetry, batch calorimetry, and densimetry. The data show nonlinear variations of apparent molar volumes and heat capacities with temperature and concentration. The properties of aqueous solutions of 6,6-dimethyladenine investigated over a similar range of concentration present similar behavior as those of other purine derivatives.  相似文献   

3.
Apparent molar volumes and heat capacities of sodium benzenesulfonate have been measured at 25°C and at molalities up to 1.1 molal using a Picker flow densimeter and a Picker flow heat capacity calorimeter. Data for both properties have been modeled with Pitzer equations for the respective functions, and the standard state values evaluated. The apparent molar volume of sodium benzenesulfonate appears to be relatively insensitive to sample preparation. Possible reasons for the difference in the apparent molar volume reported here and the literature value are discussed.  相似文献   

4.
Densities at T = (293.15, 298.15, 303.15, 313.15, 323.15, and 333.15) K and sound velocities at T = 298.15 K of tetraphenylphosphonium bromide, sodium tetraphenylborate, sodium bromide, and sodium perchlorate in dimethylsulfoxide have been measured over the composition range from (0 to 0.3) mol · kg−1. From these data, apparent molar volumes and apparent molar isentropic compressibilities at infinite dilution as well as the expansibilities have been evaluated. The results have been discussed in terms of employing tetraphenylphosphonium tetraphenylborate as a reference electrolyte in splitting the limiting apparent molar volumes and apparent molar isentropic compressibilities into ionic contributions.  相似文献   

5.
Densities of solutions of sodium bromide, sodium perchlorate, sodium tetraphenylborate, and tetraphenylphosphonium bromide in methanol at the temperatures ranging from 283.15 to 313.15 K have been measured. Ultrasound velocities for the above systems at T = 298.15 K have been determined. From the obtained data, the partial molar volumes and the partial molar isentropic compressibilities for electrolytes in solution have been estimated. Division into the ionic contributions has been proposed on the basis of the reference electrolyte method. The existence of the high-volume intermediate shell with an enhanced structure has been suggested.  相似文献   

6.
Apparent molar volumes and heat capacities of aqueous GaCl3 have been measured at 25°C in binary GaCl3 solutions up to 3 mol-kg–1, and in ternary GaCl3-HCl solutions, containing 0.1345 mol-kg–1 HCl to suppress hydrolysis, up to a concentration of 1 mol-kg–1 GaCl3. Using the Pitzer interaction model for the excess properties, and using ridge regression for the derivation of physically meaningful regression parameters, the measurements yield the following results for the standard molar properties and Pitzer parameters at 25°C: V0(GaCl3)=12.85 cm3-mol–1; 0 v (GaCl3)=1.10×10–4 kg-mol–1–J–1–cm–3; v 1 (GaCl3)=2.12×10–3 kg–mol–1–J–1–cm3; Cv(GaCl3)=1.34×10–5 kg2–J–1–cm3; Vo(GaOHCl2)=13.84 cm3–mol–1; C o p (GaCl3)=–480.8 J–K–1–mol–1; J 0 (GaCl3)=–8.02×10–6 kg–mol–1–K–2; J 1 (GaCl3)=0.73×10–4 kg–mol–1–K–2; CJ(GaCl3)=–2.52×10–6 kg2-mol–2-K–2; C p 0 (GaOHCl2)=20.4 J-K–1-mol–1. The latter parameter has only mathematical significance, its physical meaning is unclear. Comparison of the present experimental results for the standard molar properties of Ga3+ with semi-empirical correlations casts doubt upon the general validity of these correlation methods for trivalent cations.  相似文献   

7.
A flow calorimeter and flow densimeter have been used to measure volume specific heats and densities of solutions of LiCl, LiBr, NaCl, NaBr, KF, KBr, Kl, CsF, and Bu4NBr in anhydrous methanol at 25°C. The concentrations ranged from approximately 0.01m to close to saturation in some cases. Apparent molal heat capacities cp and volumes v have been evaluated and extrapolated to infinite dilution to obtain cp o and v o . Nearly all the heat capacities in methanol are negative. However, with the exception of the lithium halides and Bu4NBr they are more positive than heat capacities of the corresponding salts in water. The dependence of the heat capacities on ionic radii is generally opposite in methanol solutions from that observed for aqueous solutions. In agreement with others, the v o data indicate that electrostriction in methanol solutions is greater than in aqueous solutions.  相似文献   

8.
Previously developed additivity schemes for nonelectrolytes have been used to estimate and for tetraalkyl and tetraphenyl methanes in methanol and water. Corrections have been applied to the thermodynamic values of these model compounds to account for a variation in size of the central atom, and these were used to ascertain the effect of charge on and of alkyl and phenyl quaternary ions having N, P and B as central atoms. Investigations of R4NBr, (R=methyl to heptyl) salts show that the charge effect on and of R4N+ ions is large and relatively independent of ion size suggesting that the solvent molecules penetrate the ions. The ability to estimate and of the quaternary ions in the bromide salt solutions has made it possible to make ionic assignments with some confidence; (Br) has been evaluated as 19.7±2 and 30.2±7 cm3-mol–1 and (Br) as –83±7 and –68±30 J-K–1-mol–1 in methanol and water, respectively. The use of organic ions for making ionic assignments of and is critically examined and comparisons with other assignments are made. The scaled particle theory is employed to divide the heat capacities of electrolytes into cavity and interaction contributions.  相似文献   

9.
We have made calorimetric measurements leading to apparent molal heat capacities of pyridine and four methyl-substituted pyridines in aqueous solution at 25.0°C. Measurements of densities of the same solutions have led to apparent molal volumes. The results are as follows: pyridine, C ° = 305.7 J–°K–1-mole–1 and V ° = 77.5 cm3-mole–1; 2-methylpyridine, C ° = 370.0 J–°K–1-mole–1 and V ° = 94.3 cm3-mole–1; 3-methylpyridine, C ° = 380.2 J–°K–1-mole–1 and V ° = 93.7 cm3-mole–1; 4-methylpyridine, C ° = 378.9 J–°K–1-mole–1 and V ° = 94.3 cm3-mole–1; 2,6-dimethylpyridine, C ° = 441.8 J–°K–1-mole–1 and V ° = 109.9 cm3-mole–1. These C ° and V ° values are discussed in terms of effects of substitution of CH3-for H– in the various solute molecules.The research reported here was carried out in the Department of Chemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4.  相似文献   

10.
Heat capacities of aqueous solutions of phosphoric acid from 0.1 to 0.8 mol- kg-1 and sulfur dioxide from 0.2 to 0.9 mol-kg-1 have been measured with a flow heat-capacity calorimeter from 303 to 623 K and a pressure of 28 MPa. At the lowest molality single-solute solutions as well as mixtures of either H3PO4 or SO2 with HC1 were measured to repress dissociation. Calculated apparent molar heat capacities were corrected for dissociation reactions and the chemical relaxation effect. Experimental results for mixtures were analyzed using Young’s rule. Standard state partial molar heat capacities of H3PO4(aq) and SO2(aq) were obtained by extrapolation to infinite dilution. A few measurements of the densities of aqueous H3PO4 and SO2 were made at 25°C and a pressure of 28 MPa.  相似文献   

11.
The apparent and partial molar volumes in aqueous solution were obtained for (n-Bu)4PBr and (n-Bu)4-n Ph n PCl (n=1–4) at six temperatures from 1 to 55°C. The apparent molar expansibilities were also obtained. The hydrophobic character of the cations is reduced by replacing butyl groups with phenyl groups, as evidenced by the decrease in the magnitudes of the B v -coefficient (negative for all n) and of the temperature dependent extrema found in the apparent molar volumes and expansibilities as a function of concentration. However, the extrema exist even with BuPh3PCl at low temperatures. The result suggests that the phenyl groups weakly affect the butyl cospheres and cation-cation interactions.  相似文献   

12.
Densities and apparent molar heat capacities of some alkylated derivatives of uracil and adenine: 1-methyluracil, 1,3-dimethyluracil, 1,3-diethylthymine, 5,6-trimethylene-1,3-dimethyluracil, 5,6-tetramethylene-1,3-dimethyluracil, 5,6-pentamethylene-1,3-dimethyluracil, 2,9-dimethyladenine, 2-ethyl-9-methyladenine, 2-propyl-9-methyladenine, 8-ethyl-9-methyladenine, 6,8,9-trimethyladenine and 8-ethyl-6,9-dimethyladenine were determined using flow calorimetry and flow densimetry at 25°C. It was found that the partial molar volumes and heat capacities correlate linearly with the number of substituted methylene groups-CH 2 -as well as to the number of hydrogen atoms, n H , belonging to the skeleton of the molecule. In the case of alkylated uracils a difference was observed in the values at infinite dilution V 2 o and C p2 o , depending on the substitution of alkyl and cyclooligomethylene groups.  相似文献   

13.
A flow microcalorimeter/densimeter system has been commissioned to measure heat capacities and densities of solutions containing radioactive species as a function of temperature. Measurements were made for NaTcO4(aq) at six temperatures (189.15 K to 373.15 K for the heat capacities, 287.43 K to 396.67 K for the densities) over the molality range 0.01 to 0.29 mol-kg–1. Measurements for NaReO4(aq) (NaReO4 is a common nonradioactive analogue for NaTcO4) were made under similar conditions, but for eight temperatures and a more extensive range of molalities, 0.05 to 0.65 mol-kg–1. Heat capacities of NaCl(aq) reference solutions were also measured from 293.15 K to 398.15 K.The heat capacity and density data are analysed using Pitzer's ioninteraction model. Equations for the apparent molar heat capacities and volumes are reported. Values of the NaReO4(aq) partial molar heat capacities are compared to literature values based on integral heats of solution. The agreement between the two sets of NaReO4 results is good below 330 K, but only fair at the higher temperatures. Values of the partial molar volumes have also been derived. Using literature values and the results of our experiments, it is calculated that the disproportionation of hydrated TcO2(s) to form TcO 4 (aq) and Tc(cr) occurs more readily at high temperatures. The uncertainties introduced by using thermodynamic values for ReO 4 (aq), in the absence of values for TcO 4 (aq), are discussed.  相似文献   

14.
Partial molar volumes at 15, 25, and 45°C and partial molar heat capacities and expansivities at 25°C for ethylammonium nitrate + water mixtures are reported. The results are compared with those for other aqueous cosolvents, particularly hydrazine and ammonium nitrate.  相似文献   

15.
Partial molar volumes, V 2 o , and partial molar heat capacities, C p,2 o , of the tripeptides glycylglycylglycine, glycylglycylalanine, glycylalanylglycine and alanylglycylglycine have been determined in aqueous solution at 25°C. For the three alanyl-containing tripeptides, the data indicate that the tripeptide-water interaction is influenced by the side chain position within the molecule. The results have been rationalized in terms of likely solutesolvent interactions. The V 2 o and C p.2 o data have also been used to calculate the contribution to these properties of a-CH3 side chain.  相似文献   

16.
Heat capacities and densities of solutions of NaI in mixtures of N,N-dimethylformanide (DMF) with isobutanol, formamide, acetone, tetrahydrofuran, ethylene glycol, 2-methoxyethanol, n-propanol and benzo-15-crown-5-ether have been measured at 25°C. The apparent molar volumes of NaI in mixtures of DMF with isobutanol, formamide, ethylene glycol, n-propanol, and 2-methoxyethanol increase with the amount of these non-electrolytes, while in the systems containing acetone, tetrahydrofuran and benzo-15-crown-5 ether a decrease is observed. The apparent molar heat capacity of NaI in the system containing the crown ether is higher than that in pure DMF. In all other cases Cp, of NaI decreases with the amount of non-electrolyte. Finally, the non-ideal contributions to heat capacity and volume as a result of the interaction between pairs of unlike solutes, respectively cXY and vXY with X=NaI and Y=non-electrolyte, are calculated.On leave from the University of Lódz, Department of Physical Chemistry, ul. Nowotki 18, 91-416 Lódz, Poland.  相似文献   

17.
Densities and specific heat capacities of aqueous solutions: 1,3,5,6-tetramethyluracil, 1,6-dimethyl-3-ethyluracil, 1,6-dimethyl-3-propyluracil, 1,6-dimethyl-3-butyluracil, 1,N4-trimethylcytosine, 1,N4-dimethyl-5-ethylcytosine, 1,N4 dimethyl-5-propylcytosine, 1,N4-dimethyl-5-butylcytosine were determined using flow calorimetry and flow densimetry at 25°C. Apparent molar volumes and heat capacities, van der Waals volumes and accessible surface areas were determined. It was stated that for alkylcytosines and alkyluracils partial molar volumes and heat capacities correlate linearly with the number of substituted methylene groups-CH2-as well as with the van der Waals volumes and accessible surface areas of the compounds studied; for cyclooligouracils the cyclization effect was discussed.  相似文献   

18.
The heat capacities and volumes for binary mixtures of benzonitrile with cyclohexane were determined at 10, 25, and 45°C. The dependence of the molar excess heat capacities on temperature and composition are interpreted in terms of the thermal relaxation of associated benzonitrile molecules into monomeric species.To whom correspondence should be addressed.  相似文献   

19.
Partial molar volumes, V 2 o and partial molar heat capacities C p,2 o have been determined in aqueous solution at 25°C for the dipeptides glycyl-L-asparagine, glycyl-DL-threonine, glycyl-DL-serine and glycyl-DL-phenylalanine. These results, along with those for some other dipeptides of sequence Gly-X, were used to estimate side chain contributions to V 2 o and C p,2 o . For these dipeptides both V 2 o and C p,2 o were found to be a linear function of the respective thermodynamic property for the amino acid X. The contributions of the glycyl units to V 2 o and C p,2 o of the dipeptide are discussed.  相似文献   

20.
The densities of solutions of 1-octanol, 1-nonanol, and 1-decanol in cyclohexane up to concentrations of 1.56 mol kg–1 were measured at temperatures between 20 and 60°C. The apparent molar volumes and expansibilities were found to be linearly dependent on solute concentration. The excess molar volume and the excess thermal expansion coefficient of the solute were derived from the partial molar volume of the solute at infinite dilution and the solute densities. In addition, the limiting partial molar volume of the solute is discussed in terms of the scaled particle theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号