首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A connected matching in a graph is a collection of edges that are pairwise disjoint but joined by another edge of the graph. Motivated by applications to Hadwiger’s conjecture, Plummer, Stiebitz, and Toft (2003) introduced connected matchings and proved that, given a positive integer k, determining whether a graph has a connected matching of size at least k is NP-complete. Cameron (2003) proved that this problem remains NP-complete on bipartite graphs, but can be solved in polynomial-time on chordal graphs. We present a polynomial-time algorithm that finds a maximum connected matching in a chordal bipartite graph. This includes a novel edge-without-vertex-elimination ordering of independent interest. We give several applications of the algorithm, including computing the Hadwiger number of a chordal bipartite graph, solving the unit-time bipartite margin-shop scheduling problem in the case in which the bipartite complement of the precedence graph is chordal bipartite, and determining–in a totally balanced binary matrix–the largest size of a square sub-matrix that is permutation equivalent to a matrix with all zero entries above the main diagonal.  相似文献   

2.
Maximal complete subgraphs and clique trees are basic to both the theory and applications of chordal graphs. A simple notion of strong clique tree extends this structure to strongly chordal graphs. Replacing maximal complete subgraphs with open or closed vertex neighborhoods discloses new relationships between chordal and strongly chordal graphs and the previously studied families of chordal bipartite graphs, clique graphs of chordal graphs (dually chordal graphs), and incidence graphs of biacyclic hypergraphs. © 2000 John Wiley & Sons, Inc. J. Graph Theory 33: 151–160, 2000  相似文献   

3.
Golumbic, Kaplan, and Shamir [Graph sandwich problems, J. Algorithms 19 (1995) 449-473], in their paper on graph sandwich problems published in 1995, left the status of the sandwich problems for strongly chordal graphs and chordal bipartite graphs open. It was recently shown [C.M.H. de Figueiredo, L. Faria, S. Klein, R. Sritharan, On the complexity of the sandwich problems for strongly chordal graphs and chordal bipartite graphs, Theoret. Comput. Sci., accepted for publication] that the sandwich problem for strongly chordal graphs is NP-complete. We show that given graph G with a proper vertex coloring c, determining whether there is a supergraph of G that is chordal bipartite and also is properly colored by c is NP-complete. This implies that the sandwich problem for chordal bipartite graphs is also NP-complete.  相似文献   

4.
The question of generalizing results involving chordal graphs to similar concepts for chordal bipartite graphs is addressed. First, it is found that the removal of a bisimplicial edge from a chordal bipartite graph produces a chordal bipartite graph. As consequence, occurance of arithmetic zeros will not terminate perfect Gaussian elimination on sparse matrices having associated a chordal bipartite graph. Next, a property concerning minimal edge separators is presented. Finally, it is shown that, to any vertex of a chordal bipartite graph an edge may be added such that the chordality is maintained.  相似文献   

5.
We show that there exist linear-time algorithms that compute the strong chromatic index and a maximum induced matching of tree-cographs when the decomposition tree is a part of the input. We also show that there exist efficient algorithms for the strong chromatic index of (bipartite) permutation graphs and of chordal bipartite graphs.  相似文献   

6.
A chordal graph is called restricted unimodular if each cycle of its vertex‐clique incidence bipartite graph has length divisible by 4. We characterize these graphs within all chordal graphs by forbidden induced subgraphs, by minimal relative separators, and in other ways. We show how to construct them by starting from block graphs and multiplying vertices subject to a certain restriction, which leads to a linear‐time recognition algorithm. We show how they are related to other classes such as distance‐hereditary chordal graphs and strongly chordal graphs. © 1999 John Wiley & Sons, Inc. J Graph Theory 30: 121–136, 1999  相似文献   

7.
Polar graphs are a common generalization of bipartite, cobipartite, and split graphs. They are defined by the existence of a certain partition of vertices, which is NP-complete to decide for general graphs. It has been recently proved that for cographs, the existence of such a partition can be characterized by finitely many forbidden subgraphs, and hence tested in polynomial time. In this paper we address the question of polarity of chordal graphs, arguing that this is in essence a question of colourability, and hence chordal graphs are a natural restriction. We observe that there is no finite forbidden subgraph characterization of polarity in chordal graphs; nevertheless we present a polynomial time algorithm for polarity of chordal graphs. We focus on a special case of polarity (called monopolarity) which turns out to be the central concept for our algorithms. For the case of monopolar graphs, we illustrate the structure of all minimal obstructions; it turns out that they can all be described by a certain graph grammar, permitting our monopolarity algorithm to be cast as a certifying algorithm.  相似文献   

8.
An independent packing of triangles is a set of pairwise disjoint triangles, no two of which are joined by an edge. A triangle bramble is a set of triangles, every pair of which intersect or are joined by an edge. More generally, I consider independent packings and brambles of any specified connected graphs, not just triangles. I give a min-max theorem for the maximum number of graphs in an independent packing of any family of connected graphs in a chordal graph, and a dual min-max theorem for the maximum number of graphs in a bramble in a chordal graph.  相似文献   

9.
Satoshi Murai 《代数通讯》2013,41(10):3071-3094
In the present article, for bipartite graphs and chordal graphs, their exterior algebraic shifted graph and their symmetric algebraic shifted graph are studied. First, we will determine the symmetric algebraic shifted graph of complete bipartite graphs. It turns out that for a ≥ 3 and b ≥ 3, the exterior algebraic shifted graph of the complete bipartite graph K a,b of size a, b is different from the symmetric algebraic shifted graph of K a,b . Second, we will show that the exterior algebraic shifted graph of any chordal graph G coincides with the symmetric algebraic shifted graph of G. In addition, it will be shown that the exterior algebraic shifted graph of any chordal graph G is equal to some combinatorial shifted graph of G.  相似文献   

10.
Basic chordal graphs arose when comparing clique trees of chordal graphs and compatible trees of dually chordal graphs. They were defined as those chordal graphs whose clique trees are exactly the compatible trees of its clique graph.In this work, we consider some subclasses of basic chordal graphs, like hereditary basic chordal graphs, basic DV and basic RDV graphs, we characterize them and we find some other properties they have, mostly involving clique graphs.  相似文献   

11.
In this paper two methods for automatic generation of connected chordal graphs are proposed: the first one is based on new results concerning the dynamic maintenance of chordality under edge insertions; the second is based on expansion/merging of maximal cliques. Theoretical and experimental results are presented. In both methods, chordality is preserved along the whole generation process. L. Markenzon’s research is partially supported by grant 301068/2003-8, CNPq, Brazil.  相似文献   

12.
We study the problem of finding an acyclic orientation of an undirected graph, such that each (oriented) path is covered by a limited number k of maximal cliques. This is equivalent to finding a k-approximate solution for the interval coloring problem on a graph. We focus our attention on claw-free chordal graphs, and show how to find an orientation of such a graph in linear time, which guarantees that each path is covered by at most two maximal cliques. This extends previous published results on other graph classes where stronger assumptions were made.  相似文献   

13.
In this paper we refine the notion of tree-decomposition by introducing acyclic (R,D)-clustering, where clusters are subsets of vertices of a graph and R and D are the maximum radius and the maximum diameter of these subsets. We design a routing scheme for graphs admitting induced acyclic (R,D)-clustering where the induced radius and the induced diameter of each cluster are at most 2. We show that, by constructing a family of special spanning trees, one can achieve a routing scheme of deviation Δ?2R with labels of size bits per vertex and O(1) routing protocol for these graphs. We investigate also some special graph classes admitting induced acyclic (R,D)-clustering with induced radius and diameter less than or equal to 2, namely, chordal bipartite, homogeneously orderable, and interval graphs. We achieve the deviation Δ=1 for interval graphs and Δ=2 for chordal bipartite and homogeneously orderable graphs.  相似文献   

14.
The problem of recognizing cover-incomparability graphs (i.e. the graphs obtained from posets as the edge-union of their covering and incomparability graph) was shown to be NP-complete in general [J. Maxová, P. Pavlíkova, A. Turzík, On the complexity of cover-incomparability graphs of posets, Order 26 (2009) 229-236], while it is for instance clearly polynomial within trees. In this paper we concentrate on (classes of) chordal graphs, and show that any cover-incomparability graph that is a chordal graph is an interval graph. We characterize the posets whose cover-incomparability graph is a block graph, and a split graph, respectively, and also characterize the cover-incomparability graphs among block and split graphs, respectively. The latter characterizations yield linear time algorithms for the recognition of block and split graphs, respectively, that are cover-incomparability graphs.  相似文献   

15.
We present a new representation of a chordal graph called the clique-separator graph, whose nodes are the maximal cliques and minimal vertex separators of the graph. We present structural properties of the clique-separator graph and additional properties when the chordal graph is an interval graph, proper interval graph, or split graph. We also characterize proper interval graphs and split graphs in terms of the clique-separator graph. We present an algorithm that constructs the clique-separator graph of a chordal graph in O(n3) time and of an interval graph in O(n2) time, where n is the number of vertices in the graph.  相似文献   

16.
Associated to a simple undirected graph G is a simplicial complex ΔG whose faces correspond to the independent sets of G. We call a graph G shellable if ΔG is a shellable simplicial complex in the non-pure sense of Björner-Wachs. We are then interested in determining what families of graphs have the property that G is shellable. We show that all chordal graphs are shellable. Furthermore, we classify all the shellable bipartite graphs; they are precisely the sequentially Cohen-Macaulay bipartite graphs. We also give a recursive procedure to verify if a bipartite graph is shellable. Because shellable implies that the associated Stanley-Reisner ring is sequentially Cohen-Macaulay, our results complement and extend recent work on the problem of determining when the edge ideal of a graph is (sequentially) Cohen-Macaulay. We also give a new proof for a result of Faridi on the sequentially Cohen-Macaulayness of simplicial forests.  相似文献   

17.
We show that every k-tree of toughness greater than k3 is Hamilton-connected for k3. (In particular, chordal planar graphs of toughness greater than 1 are Hamilton-connected.) This improves the result of Broersma et al. (2007) and generalizes the result of Böhme et al. (1999).On the other hand, we present graphs whose longest paths are short. Namely, we construct 1-tough chordal planar graphs and 1-tough planar 3-trees, and we show that the shortness exponent of the class is 0, at most log3022, respectively. Both improve the bound of Böhme et al. Furthermore, the construction provides k-trees (for k4) of toughness greater than 1.  相似文献   

18.
Packing a maximum number of disjoint triangles into a given graph G is NP-hard, even for most classes of structured graphs. In contrast, we show that packing a maximum number of independent (that is, disjoint and nonadjacent) triangles is polynomial-time solvable for many classes of structured graphs, including weakly chordal graphs, asteroidal triple-free graphs, polygon-circle graphs, and interval-filament graphs. These classes contain other well-known classes such as chordal graphs, cocomparability graphs, circle graphs, circular-arc graphs, and outerplanar graphs. Our results apply more generally to independent packings by members of any family of connected graphs. Research of both authors is supported by the Natural Sciences and Engineering Research Council of Canada.  相似文献   

19.
We present polynomial algorithms to locate minimum weight dominating sets and independent dominating sets in strongly chordal graphs. We utilize an intimate relationship between strongly chordal graphs and totally balanced matrices to show that the domatic number achieves its theoretical lower bound in strongly chordal graphs and to efficiently solve certain optimization problems for totally balanced matrices.  相似文献   

20.
研究两类广义控制问题的复杂性: k-步长控制问题和k-距离控制问题, 证明了k-步长控制问题在弦图和平面二部图上都是NP-完全的. 作为上述结果的推论, 给出了k-距离控制问题在弦图和二部图上NP-完全性的新的证明, 并进一步证明了k-距离控制问题在平面二部图上也是NP-完全的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号