首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recently, Zhang, Tapia, and Dennis (Ref. 1) produced a superlinear and quadratic convergence theory for the duality gap sequence in primal-dual interior-point methods for linear programming. In this theory, a basic assumption for superlinear convergence is the convergence of the iteration sequence; and a basic assumption for quadratic convergence is nondegeneracy. Several recent research projects have either used or built on this theory under one or both of the above-mentioned assumptions. In this paper, we remove both assumptions from the Zhang-Tapia-Dennis theory.Dedicated to the Memory of Magnus R. Hestenes, 1906–1991This research was supported in part by NSF Cooperative Agreement CCR-88-09615 and was initiated while the first author was at Rice University as a Visiting Member of the Center for Research in Parallel Computation.The authors thank Yinyu Ye for constructive comments and discussions concerning this material.This author was supported in part by NSF Grant DMS-91-02761 and DOE Grant DE-FG05-91-ER25100.This author was supported in part by AFOSR Grant 89-0363, DOE Grant DE-FG05-86-ER25017, and ARO Grant 9DAAL03-90-G-0093.  相似文献   

2.
In this paper, the filter technique of Fletcher and Leyffer (1997) is used to globalize the primal-dual interior-point algorithm for nonlinear programming, avoiding the use of merit functions and the updating of penalty parameters.The new algorithm decomposes the primal-dual step obtained from the perturbed first-order necessary conditions into a normal and a tangential step, whose sizes are controlled by a trust-region type parameter. Each entry in the filter is a pair of coordinates: one resulting from feasibility and centrality, and associated with the normal step; the other resulting from optimality (complementarity and duality), and related with the tangential step.Global convergence to first-order critical points is proved for the new primal-dual interior-point filter algorithm.Mathematics Subject Classification (1991): 65K05, 90C06, 90C29, 90C30Support for this author was provided by CRPC grant CCR–9120008.Support for this author was provided by CRPC grant CCR–9120008.Support for this author was provided by Centro de Matemática da Universidade de Coimbra, by FCT under grant POCTI/35059/MAT/2000, by the European Union under grant IST-2000-26063, and by Fundaç\ ao Calouste Gulbenkian. The author would also like to thank the IBM T.J. Watson Research Center and the Institute for Mathematics and Its Applications for their local support.  相似文献   

3.
In this paper we propose a primal-dual interior-point method for large, sparse, quadratic programming problems. The method is based on a reduction presented by Gonzalez-Lima, Wei, and Wolkowicz [14] in order to solve the linear systems arising in the primal-dual methods for linear programming. The main features of this reduction is that it is well defined at the solution set and it preserves sparsity. These properties add robustness and stability to the algorithm and very accurate solutions can be obtained. We describe the method and we consider different reductions using the same framework. We discuss the relationship of our proposals and the one used in the LOQO code. We compare and study the different approaches by performing numerical experimentation using problems from the Maros and Meszaros collection. We also include a brief discussion on the meaning and effect of ill-conditioning when solving linear systems.This work was partially supported by DID-USB (GID-001).  相似文献   

4.
One motivation for the standard primal-dual direction used in interior-point methods is that it can be obtained by solving a least-squares problem. In this paper, we propose a primal-dual interior-point method derived through a modified least-squares problem. The direction used is equivalent to the Newton direction for a weighted barrier function method with the weights determined by the current primal-dual iterate. We demonstrate that the Newton direction for the usual, unweighted barrier function method can be derived through a weighted modified least-squares problem. The algorithm requires a polynomial number of iterations. It enjoys quadratic convergence if the optimal vertex is nondegenerate.The research of the second author was supported in part by ONR Grants N00014-90-J-1714 and N00014-94-1-0391.  相似文献   

5.
The Helmberg-Rendl-Vanderbei-Wolkowicz/Kojima-Shindoh-Hara/Monteiro and Nesterov-Todd search directions have been used in many primal-dual interior-point methods for semidefinite programs. This paper proposes an efficient method for computing the two directions when the semidefinite program to be solved is large scale and sparse.  相似文献   

6.
Two interior-point algorithms are proposed and analyzed, for the (local) solution of (possibly) indefinite quadratic programming problems. They are of the Newton-KKT variety in that (much like in the case of primal-dual algorithms for linear programming) search directions for the “primal” variables and the Karush-Kuhn-Tucker (KKT) multiplier estimates are components of the Newton (or quasi-Newton) direction for the solution of the equalities in the first-order KKT conditions of optimality or a perturbed version of these conditions. Our algorithms are adapted from previously proposed algorithms for convex quadratic programming and general nonlinear programming. First, inspired by recent work by P. Tseng based on a “primal” affine-scaling algorithm (à la Dikin) [J. of Global Optimization, 30 (2004), no. 2, 285–300], we consider a simple Newton-KKT affine-scaling algorithm. Then, a “barrier” version of the same algorithm is considered, which reduces to the affine-scaling version when the barrier parameter is set to zero at every iteration, rather than to the prescribed value. Global and local quadratic convergence are proved under nondegeneracy assumptions for both algorithms. Numerical results on randomly generated problems suggest that the proposed algorithms may be of great practical interest. The work of the first author was supported in part by the School of Computational Science of Florida State University through a postdoctoral fellowship. Part of this work was done while this author was a Research Fellow with the Belgian National Fund for Scientific Research (Aspirant du F.N.R.S.) at the University of Liège. The work of the second author was supported in part by the National Science Foundation under Grants DMI9813057 and DMI-0422931 and by the US Department of Energy under Grant DEFG0204ER25655. Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the National Science Foundation or those of the US Department of Energy.  相似文献   

7.
This paper presents a multiplier-type method for nonlinear programming problems with both equality and inequality constraints. Slack variables are used for the inequalities. The penalty coefficient is adjusted automatically, and the method converges quadratically to points satisfying second-order conditions.The work of the first author was supported by NSF RANN and JSEP Contract No. F44620-71-C-0087; the work of the second author was supported by the National Science Foundation Grant No. ENG73-08214A01 and US Army Research Office Durham Contract No. DAHC04-73-C-0025.  相似文献   

8.
This paper presents some new results in the theory of Newton-type methods for variational inequalities, and their application to nonlinear programming. A condition of semistability is shown to ensure the quadratic convergence of Newton's method and the superlinear convergence of some quasi-Newton algorithms, provided the sequence defined by the algorithm exists and converges. A partial extension of these results to nonsmooth functions is given. The second part of the paper considers some particular variational inequalities with unknowns (x, ), generalizing optimality systems. Here only the question of superlinear convergence of {x k } is considered. Some necessary or sufficient conditions are given. Applied to some quasi-Newton algorithms they allow us to obtain the superlinear convergence of {x k }. Application of the previous results to nonlinear programming allows us to strengthen the known results, the main point being a characterization of the superlinear convergence of {x k } assuming a weak second-order condition without strict complementarity.  相似文献   

9.
One perceived deficiency of interior-point methods in comparison to active set methods is their inability to efficiently re-optimize by solving closely related problems after a warmstart. In this paper, we investigate the use of a primal–dual penalty approach to overcome this problem. We prove exactness and convergence and show encouraging numerical results on a set of linear and mixed integer programming problems. Research of the first author is sponsored by ONR grant N00014-04-1-0145. Research of the second author is supported by NSF grant DMS-0107450.  相似文献   

10.
On the superlinear local convergence of a filter-SQP method   总被引:5,自引:0,他引:5  
Transition to superlinear local convergence is shown for a modified version of the trust-region filter-SQP method for nonlinear programming introduced by Fletcher, Leyffer, and Toint [8]. Hereby, the original trust-region SQP-steps can be used without an additional second order correction. The main modification consists in using the Lagrangian function value instead of the objective function value in the filter together with an appropriate infeasibility measure. Moreover, it is shown that the modified trust-region filter-SQP method has the same global convergence properties as the original algorithm in [8].Mathematics Subject Classification (2000): 90C55, 65K05, 90C30  相似文献   

11.
In this paper, the nonlinear complementarity problem is transformed into the least squares problem with nonnegative constraints ,and a SQP algorithm for this reformulation based on a damped Gauss-Newton type method is presented. It is shown that the algorithm is globally and locally superlinearly (quadratically) convergent without the assumption of monotonicity.  相似文献   

12.
We consider a linesearch globalization of the local primal-dual interior-point Newton method for nonlinear programming introduced by El-Bakry, Tapia, Tsuchiya, and Zhang. The linesearch uses a new merit function that incorporates a modification of the standard augmented Lagrangian function and a weak notion of centrality. We establish a global convergence theory and present promising numerical experimentation.  相似文献   

13.
In this paper, we present neighborhood-following algorithms for linear programming. When the neighborhood is a wide neighborhood, our algorithms are wide neighborhood primal-dual interior point algorithms. If the neighborhood degenerates into the central path, our algorithms also degenerate into path-following algorithms. We prove that our algorithms maintain the O(n~(1/2)L)-iteration complexity still, while the classical wide neighborhood primal-dual interior point algorithms have only the O(nL)-iteration complexity. We also proved that the algorithms are quadratic convergence if the optimal vertex is nondegenerate. Finally, we show some computational results of our algorithms.  相似文献   

14.
A new programming algorithm for nonlinear constrained optimization problems is proposed. The method is based on the penalty function approach and thereby circumyents the necessity to maintain feasibility at each iteration, but it also behaves much like the gradient projection method. Although only first-order information is used, the algorithm converges asymptotically at a rate which is independent of the magnitude of the penalty term; hence, unlike the simple gradient method, the asymptotic rate of the proposed method is not affected by the ill-conditioning associated with the introduction of the penalty term. It is shown that the asymptotic rate of convergence of the proposed method is identical with that of the gradient projection method.Dedicated to Professor M. R. HestenesThis research was supported by the National Science Foundation, Grant No. GK-16125.  相似文献   

15.
《Optimization》2012,61(6):731-755
Despite of their excellent numerical performance for solving practical nonlinear programming problems, the theoretical convergence behavior of generalized reduced gradient algorithms has been investigated very seldom in the literature. One specific class of generalized reduced gradient methods will be presented for which a global convergence result can be shown, i.e. the approximation of a Kuhn-Tucker point starting from arbitrary initial values. The relationship of the proposed variant with some other versions of generalized reduced gradient algorithms will be discussed.  相似文献   

16.
In this paper, a formulation for an interior-point Newton method of general nonlinear programming problems is presented. The formulation uses the Coleman-Li scaling matrix. The local convergence and the q-quadratic rate of convergence for the method are established under the standard assumptions of the Newton method for general nonlinear programming.  相似文献   

17.
18.
非线性约束最优化一族超线性收敛的可行方法   总被引:5,自引:0,他引:5  
本文建立求解非线性不等式约束最优化一族含参数的可行方法.算法每次迭代仅需解一个规模较小的二次规划.在一定的假设条件下,证明了算法族的全局收敛性和超线性收敛性.  相似文献   

19.
Generalized stationary points of the mathematical program with equilibrium constraints (MPEC) are studied to better describe the limit points produced by interior point methods for MPEC. A primal-dual interior-point method is then proposed, which solves a sequence of relaxed barrier problems derived from MPEC. Global convergence results are deduced under fairly general conditions other than strict complementarity or the linear independence constraint qualification for MPEC (MPEC-LICQ). It is shown that every limit point of the generated sequence is a strong stationary point of MPEC if the penalty parameter of the merit function is bounded. Otherwise, a point with certain stationarity can be obtained. Preliminary numerical results are reported, which include a case analyzed by Leyffer for which the penalty interior-point algorithm failed to find a stationary point.Mathematics Subject Classification (1991):90C30, 90C33, 90C55, 49M37, 65K10  相似文献   

20.
In this study, a new filter algorithm is presented for solving the nonlinear semidefinite programming. This algorithm is inspired by the classical sequential quadratic programming method. Unlike the traditional filter methods, the sufficient descent is ensured by changing the step size instead of the trust region radius. Under some suitable conditions, the global convergence is obtained. In the end, some numerical experiments are given to show that the algorithm is effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号