首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As part of the fourth statistical assessment of modeling of proteins and ligands (sampl.eyesopen.com) prediction challenge, the strength of association of nine guests (19) binding to octa-acid host was determined by a combination of 1H NMR and isothermal titration calorimetry. Association constants in sodium tetraborate buffered (pH 9.2) aqueous solution ranged from 5.39 × 102 M?1 in the case of benzoate 1, up to 3.82 × 105 M?1 for trans-4-methylcyclohexanoate 7. Overall, the free energy difference between the free energies of complexation of these weakest and strongest binding guests was ΔΔG° = 3.88 kcal mol?1. Based on a multitude of previous studies, the anticipated order of strength of binding was close to that which was actually obtained. However, the binding of guest 3 (4-ethylbenzoate) was considerably stronger than initially estimated.  相似文献   

2.
Modulation of opioid receptors is the primary choice for pain management and structural information studies have gained new horizons with the recently available X-ray crystal structures. Herkinorin is one of the most remarkable salvinorin A derivative with high affinity for the mu opioid receptor, moderate selectivity and lack of nitrogen atoms on its structure. Surprisingly, binding models for herkinorin are lacking. In this work, we explore binding models of herkinorin using automated docking, molecular dynamics simulations, free energy calculations and available experimental information. Our herkinorin D-ICM-1 binding model predicted a binding free energy of ?11.52?±?1.14 kcal mol?1 by alchemical free energy estimations, which is close to the experimental values ?10.91?±?0.2 and ?10.80?±?0.05 kcal mol?1 and is in agreement with experimental structural information. Specifically, D-ICM-1 molecular dynamics simulations showed a water-mediated interaction between D-ICM-1 and the amino acid H2976.52, this interaction coincides with the co-crystallized ligands. Another relevant interaction, with N1272.63, allowed to rationalize herkinorin’s selectivity to mu over delta opioid receptors. Our suggested binding model for herkinorin is in agreement with this and additional experimental data. The most remarkable observation derived from our D-ICM-1 model is that herkinorin reaches an allosteric sodium ion binding site near N1503.35. Key interactions in that region appear relevant for the lack of β-arrestin recruitment by herkinorin. This interaction is key for downstream signaling pathways involved in the development of side effects, such as tolerance. Future SAR studies and medicinal chemistry efforts will benefit from the structural information presented in this work.  相似文献   

3.
The absolute binding free energies and binding enthalpies of twelve host–guest systems in the SAMPL5 blind challenge were computed using our attach-pull-release (APR) approach. This method has previously shown good correlations between experimental and calculated binding data in retrospective studies of cucurbit[7]uril (CB7) and β-cyclodextrin (βCD) systems. In the present work, the computed binding free energies for host octa acid (OA or OAH) and tetra-endo-methyl octa-acid (TEMOA or OAMe) with guests are in good agreement with prospective experimental data, with a coefficient of determination (R2) of 0.8 and root-mean-squared error of 1.7 kcal/mol using the TIP3P water model. The binding enthalpy calculations achieve moderate correlations, with R2 of 0.5 and RMSE of 2.5 kcal/mol, for TIP3P water. Calculations using the newly developed OPC water model also show good performance. Furthermore, the present calculations semi-quantitatively capture the experimental trend of enthalpy-entropy compensation observed, and successfully predict guests with the strongest and weakest binding affinity. The most populated binding poses of all twelve systems, based on clustering analysis of 750 ns molecular dynamics (MD) trajectories, were extracted and analyzed. Computational methods using MD simulations and explicit solvent models in a rigorous statistical thermodynamic framework, like APR, can generate reasonable predictions of binding thermodynamics. Especially with continuing improvement in simulation force fields, such methods hold the promise of making substantial contributions to hit identification and lead optimization in the drug discovery process.  相似文献   

4.
We review our performance in the SAMPL5 challenge for predicting host–guest binding affinities using the movable type (MT) method. The challenge included three hosts, acyclic Cucurbit[2]uril and two octa-acids with and without methylation at the entrance to their binding cavities. Each host was associated with 6–10 guest molecules. The MT method extrapolates local energy landscapes around particular molecular states and estimates the free energy by Monte Carlo integration over these landscapes. Two blind submissions pairing MT with variants of the KECSA potential function yielded mean unsigned errors of 1.26 and 1.53 kcal/mol for the non-methylated octa-acid, 2.83 and 3.06 kcal/mol for the methylated octa-acid, and 2.77 and 3.36 kcal/mol for Cucurbit[2]uril host. While our results are in reasonable agreement with experiment, we focused on particular cases in which our estimates gave incorrect results, particularly with regard to association between the octa-acids and an adamantane derivative. Working on the hypothesis that differential solvation effects play a role in effecting computed binding affinities for the parent octa-acid and the methylated octa-acid and that the ligands bind inside the pockets (rather than on the surface) we devised a new solvent accessible surface area term to better quantify solvation energy contributions in MT based studies. To further explore this issue a, molecular dynamics potential of mean force (PMF) study indicates that, as found by our docking calculations, the stable binding mode for this ligand is inside (rather than surface bound) the octa-acid cavity whether the entrance is methylated or not. The PMF studies also obtained the correct order for the methylation-induced change in binding affinities and associated the difference, to a large extent to differential solvation effects. Overall, the SAMPL5 challenge yielded in improvements our solvation modeling and also demonstrated the need for thorough validation of input data integrity prior to any computational analysis.  相似文献   

5.
6.
The influence of π-stacking interactions between guanine (G) and the side chain of tyrosine (Tyr) on the N7 and O6 proton affinities of guanine and on the capability of these sites to act as hydrogen bond acceptors is analyzed at the B3LYP-D, M05-2X and MP2 levels of theory. With all methods, results from full geometry optimizations indicate that stacking interactions increase the N7 and O6 proton affinities by about 5–6 kcal mol?1, the increase being slightly larger for N7. Consistently with these results, hydrogen bond distances between guanine and one water molecule decrease in the stacked system. Moreover, interaction energy between H2O and (G-Tyr) is found to be 2–3 kcal mol?1 larger than in G···H2O. This strengthening arises from the additional Tyr–H2O stabilizing interactions and from a cooperative interplay between stacking and hydrogen bond forces.  相似文献   

7.
Here, the interaction of single-walled carbon nanotubes (SWCNTs) and human serum albumin (HSA) as one of the most important proteins for carrying and binding of drugs was investigated and the impact of radius to volume ratio and chirality of the SWCNTs was evaluated using molecular docking method. Molecular docking results represented that zigzag SWCNT with radius to volume ratio equal to 6.77 × 10?3 Å?2 has the most negative binding energy (?17.16 kcal mol?1) and binds to the HSA cleft by four π–cation interactions. To study the changes of HSA structure, the complex of HSA–SWCNT was subjected to 30 ns molecular dynamics simulation. The MD results showed that HSA was compressed about 2% after interaction with SWCNT. The equilibrated structure of HSA–SWCNT complex was used to compare the binding of warfarin to HSA in the absence and presence of SWCNT. The obtained results represent that warfarin-binding site was changed in the presence of SWCNT and its binding energy was increased. Really, warfarin was bound on the surface of SWCNT instead of its binding site on HSA. It means that HSA function as a carrier for warfarin is altered, the free concentration of warfarin is changed, and its release is decreased in the presence of SWCNT.  相似文献   

8.
The conformational preference of the methyl group of 1-methyl-1-germacyclohexane was studied experimentally in solution (low-temperature 13C NMR) and by quantum chemical calculations (CCSD(T), MP2 and DFT methods). The NMR experiment resulted in an axial/equatorial ratio of 44/56 mol% at 114 K corresponding to an A value (A = G ax G eq) of 0.06 kcal mol?1. An average value for ΔG e→a #  = 5.0 ± 0.1 kcal mol?1 was obtained for the temperature range 106–134 K. The experimental results are very well reproduced by the calculations. CCSD(T)/CBS calculations + thermal corrections resulted in an A value of 0.02 kcal mol?1, whereas a ΔE value of ?0.01 kcal mol?1 at 0 K was obtained.  相似文献   

9.
We report here NMR and Isothermal Titration Calorimetry studies of the binding of ionisable guests (carboxylate acids) to a deep-cavity cavitand. These studies reveal that the shortest guests favoured 1:1 complex formation, but the longer the alkyl chain the more the 2:1 host-guest capsule is favoured. For intermediate-sized guests, the equilibrium between these two states is controlled by pH; at low values the capsule containing the carboxylic acid guest is favoured, whereas as the pH is raised deprotonation of the guest favours the 1:1 complex. Interestingly, for one host–guest pair the energy required to decap the 2:1 capsular complex and form the 1:1 complex is sufficient to shift the pKa of the guest by ~3–4 orders of magnitude (4.1–5.4 kcal mol?1). The two largest guests examined form stable 2:1 capsules, with in both cases the guest adopting a relatively high energy J-shaped motif. Furthermore, these 2:1 complexes are sufficiently stable that at high pH guest deprotonation occurs without decapping of the capsule.  相似文献   

10.
Although supramolecular chemistry is traditionally an experimental discipline, computations have emerged as important tools for the understanding of supramolecules. We have explored how well commonly used density functional theory quantum mechanics and polarizable continuum solvation models can calculate binding affinities of host‐guest systems. We report the calculation of binding affinities for eight host–guest complexes and compare our results to experimentally measured binding free energies that span the range from ?2.3 to ?6.1 kcal mol?1. These systems consist of four hosts (biotin[6]uril, triphenoxymethane, cryptand, and bis‐thiourea) with different halide ions (F?, Cl?, Br?) in various media including organic and aqueous. The mean average deviation (MAD) of calculated from measured ΔGa is 2.5 kcal mol?1 when using B3LYP‐D3 with either CPCM or PCM. This MAD value lowers even more by eliminating two outliers: 1.1 kcal mol?1 for CPCM and 1.2 kcal mol?1 for PCM. The best DFT and implicit solvation model combination that we have studied is B3LYP?D3 with either CPCM or PCM.  相似文献   

11.
Radical cation formation is proposed for the rapid cyclization of 1, 2-bis[5-phenyl-2-methylthien-3-yl]cyclopentene and oligothiophene functionalized dimethyldihydropyrenes (DMDHP). Density functional theory calculations have been performed to rationalize the effect of a radical cation on the activation barrier of different classes of electrocyclic photochromes (DHP, dithienylethene, dihydroazulene and fulgide). For exact comparative analysis, the activation barrier of neutral (singlet) analogues at the same level of theory are also calculated. In addition, the concerted nature and aromaticity of transition states were investigated with the help of synchronicity (Sy.) and nuclear independent chemical shift values NICS(0) calculations, respectively, for both the radical cation and neutral systems. In case of the radical cation, thermal return of CPD to DHP, the activation barrier is very low (ΔH = 3.13 kcal mol?1, ΔG = 4.01 kcal mol?1) as compared to the neutral analogue (ΔH = 20.6 kcal mol?1, ΔG = 20.98 kcal mol?1), which is consistent with experimental observations. Similarly for dithenylethenes, radical cation formation has a large impact on the activation barrier (ΔH = 19.44 kcal mol?1, ΔG = 22.29 kcal mol?1). However, radical cation formation has almost negligible impact on the activation barrier of VHF-DHA and fulgide isomerization. The significant difference has been observed for synchronicity and NICS(0) values of all types of photochromes under radical cation conditions as compared to the neutral system.  相似文献   

12.
Decomposition of 2-fluoro-2,3-dihydrophosphinine (1), 2-chloro-2,3-dihydrophosphinine (3), 2-bromo-2,3-dihydrophosphinine (5) to phosphinine was investigated using Molecular orbital and density functional theory. Study on the B3LYP/6-311+G** level of theory revealed that the required energy for the decomposition of compounds 1, 3, and 5 to phosphinine is 30.56 kcal·mol?1, 28.23 kcal·mol?1, and 24.03 kcal·mol?1, respectively. HF/6-311+G**//B3LYP/6-311+G** calculated barrier height for the decomposition of compound 1, 3, and 5 to phosphinine is 57.56 kcal·mol?1, 37.26 kcal·mol?1, and 30.77 kcal·mol?1, respectively. Also, MP2/6-311+G**//B3LYP/6-311+G** results indicated that the barrier height for the decomposition of compound 1, 3, and 5 to phosphinine is 46.59 kcal·mol?1, 47.28 kcal·mol?1, and 42.57 kcal·mol?1, respectively. Natural bond orbital (NBO) population analysis and nuclear independent chemical shift (NICS) results showed that, reactants are non-aromatic but products of elimination reaction are aromatic, C-H and C-X bonds are broken and H-X bond is appear.  相似文献   

13.
We have estimated free energies for the binding of nine cyclic carboxylate guest molecules to the octa-acid host in the SAMPL4 blind-test challenge with four different approaches. First, we used standard free-energy perturbation calculations of relative binding affinities, performed at the molecular-mechanics (MM) level with TIP3P waters, the GAFF force field, and two different sets of charges for the host and the guest, obtained either with the restrained electrostatic potential or AM1-BCC methods. Both charge sets give good and nearly identical results, with a mean absolute deviation (MAD) of 4 kJ/mol and a correlation coefficient (R 2) of 0.8 compared to experimental results. Second, we tried to improve these predictions with 28,800 density-functional theory (DFT) calculations for selected snapshots and the non-Boltzmann Bennett acceptance-ratio method, but this led to much worse results, probably because of a too large difference between the MM and DFT potential-energy functions. Third, we tried to calculate absolute affinities using minimised DFT structures. This gave intermediate-quality results with MADs of 5–9 kJ/mol and R 2 = 0.6–0.8, depending on how the structures were obtained. Finally, we tried to improve these results using local coupled-cluster calculations with single and double excitations, and non-iterative perturbative treatment of triple excitations (LCCSD(T0)), employing the polarisable multipole interactions with supermolecular pairs approach. Unfortunately, this only degraded the predictions, probably because of a mismatch between the solvation energies obtained at the DFT and LCCSD(T0) levels.  相似文献   

14.
The scenarios of preferred protonation sites and the absolute gas-phase proton affinities of C5- and N4-amino derivatives of oxazolidinone (OXA) molecules possessing two oxygen and two nitrogen atoms, are studied to investigate the effect of substitution of amino group on geometry, electronic structure, and proton affinities of these molecules. The natural bond orbital analysis is invoked to obtain the second-order delocalization energies, occupations of lone pairs, charge distribution, and bond orders to rationalize the obtained results. Our findings reveal a strong nucleophilicity of O1 site in C5-amino and N4-amino-substituted OXA isomers just as in un-substituted OXA. The substituent nitrogen in N4-amino-substituted OXA has comparable electrophilicity to O1 site while lesser than acyl oxygen and higher than nitrogen of OXA ring in C5-amino-substituted OXA. The PA values of C5- and N4-amino-substituted OXA isomers span in the range 172.06–205.77 kcal mol?1 (at CBS-Q). The PA values for the potential sites increase in the range 1.96–27.08 kcal mol?1 as a result of the amino substitution at C5 and N4 in orientation (b) while exceptionally they decrease by 0.57–2.95 kcal mol?1 as a result of the amino substitution at N4 in orientation (a). The results for the order of PA values of potential sites have been supported by molecular electrostatic potential maps. Our findings indicate that the factors such as geometrical rearrangements, variations in atomic charge densities and electron delocalization, effect of substituent, intramolecular hydrogen bonding, and electronic changes direct the relative stabilities and proton affinities of N, C5-substituted amino OXA isomers.  相似文献   

15.
In the context of the SAMPL6 challenges, series of blinded predictions of standard binding free energies were made with the SOMD software for a dataset of 27 host–guest systems featuring two octa-acids hosts (OA and TEMOA) and a cucurbituril ring (CB8) host. Three different models were used, ModelA computes the free energy of binding based on a double annihilation technique; ModelB additionally takes into account long-range dispersion and standard state corrections; ModelC additionally introduces an empirical correction term derived from a regression analysis of SAMPL5 predictions previously made with SOMD. The performance of each model was evaluated with two different setups; buffer explicitly matches the ionic strength from the binding assays, whereas no-buffer merely neutralizes the host–guest net charge with counter-ions. ModelC/no-buffer shows the lowest mean-unsigned error for the overall dataset (MUE 1.29?<?1.39?<?1.50 kcal mol?1, 95% CI), while explicit modelling of the buffer improves significantly results for the CB8 host only. Correlation with experimental data ranges from excellent for the host TEMOA (R2 0.91?<?0.94?<?0.96), to poor for CB8 (R2 0.04?<?0.12?<?0.23). Further investigations indicate a pronounced dependence of the binding free energies on the modelled ionic strength, and variable reproducibility of the binding free energies between different simulation packages.  相似文献   

16.
The supramolecular interactions between a Bradykinin Potentiating Peptide (BPP10c) and β-cyclodextrin (βCD) have been investigated by using several techniques. These new properties acquired by the inclusion phenomena are important in developing a strategy for pharmaceutical formulation. The BPP10c structural elucidation and its inclusion complex formed have been investigated using Nuclear Magnetic Resonance techniques. The peptide secondary structure was investigated using infrared spectroscopy in solution, Circular Dichroism and NMR. In addition, the thermodynamic parameters of the inclusion process were also evaluated using Isothermal Titration Calorimetry. The results obtained by these physical–chemical techniques suggested a 1:1 complex formed by interaction between the Tryptophan amino acid residue and the βCD cavity. The peptide secondary structure was not substantially modified for the inclusion process. In addition, the inclusion process proved to be spontaneous (ΔGº = ?2.53 kcal mol?1), with an enthalpy reduction (ΔHº = ?3.72 kcal mol?1) and a favored entropic variation (TΔSº = ?1.19 kcal mol?1).  相似文献   

17.
We have estimated free energies for the binding of eight carboxylate ligands to two variants of the octa-acid deep-cavity host in the SAMPL6 blind-test challenge (with or without endo methyl groups on the four upper-rim benzoate groups, OAM and OAH, respectively). We employed free-energy perturbation (FEP) for relative binding energies at the molecular mechanics (MM) and the combined quantum mechanical (QM) and MM (QM/MM) levels, the latter obtained with the reference-potential approach with QM/MM sampling for the MM → QM/MM FEP. The semiempirical QM method PM6-DH+ was employed for the ligand in the latter calculations. Moreover, binding free energies were also estimated from QM/MM optimised structures, combined with COSMO-RS estimates of the solvation energy and thermostatistical corrections from MM frequencies. They were performed at the PM6-DH+ level of theory with the full host and guest molecule in the QM system (and also four water molecules in the geometry optimisations) for 10–20 snapshots from molecular dynamics simulations of the complex. Finally, the structure with the lowest free energy was recalculated using the dispersion-corrected density-functional theory method TPSS-D3, for both the structure and the energy. The two FEP approaches gave similar results (PM6-DH+/MM slightly better for OAM), which were among the five submissions with the best performance in the challenge and gave the best results without any fit to data from the SAMPL5 challenge, with mean absolute deviations (MAD) of 2.4–5.2 kJ/mol and a correlation coefficient (R2) of 0.77–0.93. This is the first time QM/MM approaches give binding free energies that are competitive to those obtained with MM for the octa-acid host. The QM/MM-optimised structures gave somewhat worse performance (MAD?=?3–8 kJ/mol and R2?=?0.1–0.9), but the results were improved compared to previous studies of this system with similar methods.  相似文献   

18.
Some new photorefractive polymers containing indole groups were synthesized and characterized by IR, 1H NMR, and UV techniques. The Gibbs free energy changes (ΔG) of corresponding reactions were predicted by density functional theory to be 4.19 and ?9.71 kcal mol?1 for –H, and 4.12 and ?11.93 kcal mol?1 for –OCH3, respectively. The glass transition temperature (T g) of the polymers were about 96–111 °C. The nonlinear second-order optical susceptibility was predicted to be 2.84 × 10?30 and 1.04 × 10?30 esu by theoretical quantum calculations.  相似文献   

19.
The interaction of 2,4,6-triphenylpyrylium cation with p-sulfonatocalix[4]arene is studied using absorption, emission, NMR and electrochemical techniques. The increase in the absorption is observed with the increase in the concentration of p-sulfonatocalix[4]arene. The emission intensity of 2,4,6-triphenylpyrylium cation is also enhanced in the presence of p-sulfonatocalix[4]arene. The electrochemical titration reveals the presence of host–guest interaction. The NMR analysis explains the upper rim interaction of 2,4,6-triphenypyrylium cation with p-sulfonatocalix[4]arene. The mode of binding is studied using computational methods. The quantum chemical simulations reveal the binding orientation of cationic TPP with p-SC4. The calculated complexation energy (??33.19 kcal mol?1) indicates the strong binding nature of 2,4,6-triphenylpyrylium cation with p-sulfonatocalix[4]arene.  相似文献   

20.
The energies of the Pt-NH3 and Pt-Cl bonds of cisplatin are calculated by means of a density functional theory method with the B3LYP functional and various basis sets. The calculated bond energies of 37.38 kcal·mol−1 and 64.35 kcal·mol−1 for Pt-NH3 and Pt-Cl, respectively, agree well with the experimental values (37.28 kcal·mol−1 and 69.31 kcal·mol−1 respectively) derived from enthalpy changes. The proton and lithium ion affinities of cisplatin are also obtained with the B3LYP functional. Structural characterizations for the protonated and lithiated cisplatin complexes are given. Protonation and lithiation alter the geometric parameters, and the gas-phase proton affinity (198.71 kcal·mol−1) is much higher than the lithium ion affinity (70.32 kcal·mol−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号