首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and magnetic properties of three isostructural hexadecametallic manganese clusters [Mn(16)O(16)(OMe)(6)(O(2)CCH(2)Ph)(16)(MeOH)(6)] (1), [Mn(16)O(16)(OMe)(6)(O(2)CCH(2)Cl)(16)(MeOH)(6)] (2), and [Mn(16)O(16)(OMe)(6)(O(2)CCH(2)Br)(16)(MeOH)(6)] (3) are reported. The complexes were prepared by a reductive aggregation reaction involving phenylacetic acid, chloroacetic acid or bromoacetic acid, and NBu(n)()(4)MnO(4) in MeOH. Complex 1 crystallizes in the monoclinic space group C2/c and consists of 6 Mn(IV) and 10 Mn(III) ions held together by 14 mu(3)-O(2)(-), 2 mu-O(2)(-), 4 mu-MeO(-), and 2 mu-O(2)CCH(2)Ph(-) groups. The remaining 14 mu-O(2)CCH(2)Ph(-) ligands, 2 mu-MeO(-) groups, and 6 terminal MeOH molecules constitute the peripheral ligation in the complex. Variable-temperature, solid-state dc magnetic susceptibility measurements on 1-3 in the temperature range 5.0-300 K reveal that all three complexes are dominated by intramolecular antiferromagnetic exchange interactions. Low-lying excited states preclude an exact determination of the spin ground state for 1-3 by magnetization measurements. Alternating current susceptibility measurements at zero dc field in the temperature range 1.8-10 K and a 3.5 G ac field oscillating at frequencies in the 5-1488 Hz range display, at temperatures below 3 K, a nonzero, frequency-dependent chi(M)"signal for complexes 1-3, with the peak maxima lying at temperatures less than 1.8 K. Single-crystal magnetization versus dc field scans down to 0.04 K for complex 1 show hysteresis behavior at <1 K, establishing 1 as a new member of the SMM family. No clear steps characteristic of quantum tunneling of magnetization (QTM) were observed in the hysteresis loops.  相似文献   

2.
The syntheses, structures, and magnetic properties are reported of the mixed-metal complexes [Ce4Mn10O10(OMe)6(O2CPh)16(NO3)2(MeOH)2(H2O)2] (1) and [Th6Mn10O22(OH)2(O2CPh)16-(NO3)2(H2O)8] (2), which were both prepared by the reaction of (NBun4)[Mn4O2(O2CPh)9(H2O)] (3) with a source of the heterometal in MeCN/MeOH. Complexes 1 and 2 crystallize in the monoclinic space group C2/c and the triclinic space group P, respectively. Complex 1 consists of 10 MnIII, 2 CeIII, and 2 CeIV atoms and possesses a very unusual tubular [Ce4Mn10O10(OMe)6]18+ core. Complex 2 consists of 10 MnIV and 6 ThIV atoms and possesses a [Th6Mn10O22(OH)2]18+ core with the metal atoms arranged in layers with a 2:3:6:3:2 pattern. Peripheral ligation around the cores is provided by 16 bridging benzoates, 2 chelating nitrates, and either (i) 2 each of terminal H2O and MeOH groups in 1 or (ii) 8 terminal H2O groups in 2. Complex 1 is the largest mixed-metal Ce/Mn cluster and the first 3d/4f cluster with mixed-valency in its lanthanide component, while complex 2 is the first Th/Mn cluster and the largest mixed transition metal/actinide cluster to date. Solid-state dc and ac magnetic susceptibility measurements on 1 and 2 establish that they possess S = 4 and 3 ground states, respectively. Ac susceptibility studies on 1 revealed nonzero frequency-dependent out-of-phase (chiM' ') signals at temperatures below 3 K; complex 2 displays no chiM' ' signals. However, single-crystal magnetization vs dc field scans at variable temperatures and variable sweep-rates down to 0.04 K on 1 revealed no noticeable hysteresis loops, except very minor ones at 0.04 K assignable to weak intermolecular interactions propagated by hydrogen bonds involving CeIII-bound ligands. Complex 1 is thus concluded not to be a single-molecule magnet (SMM), and the combined results thus represent a caveat against taking such ac signals as sufficient proof of a SMM.  相似文献   

3.
The synthesis and magnetic properties of the compound [Mn(22)O(6)(OMe)(14)(O(2)CMe)(16)(tmp)(8)(HIm)(2)] 1 are reported. Complex 1 was prepared by treatment of [Mn(3)O(MeCO(2))(6)(HIm)(3)](MeCO(2)) (HIm = imidazole) with 1,1,1-tris(hydroxymethyl)propane (H(3)tmp) in MeOH. Complex 1.2MeOH crystallizes in the orthorhombic space group Pbca. The molecule consists of a metallic core of 2 Mn(IV), 18 Mn(III), and 2 Mn(II) ions linked by a combination of 6 micro(3)-bridging O(2)(-) ions, 14 micro(3)- and micro(2)-bridging MeO(-) ions, 16 micro-MeCO(2)(-) ligands, and 8 tmp(3)(-) ligands, which use their alkoxide arms to bridge in a variety of ways. The metal-oxygen core is best described as a wheel made from [Mn(3)O(4)] partial cubes and [Mn(3)O] triangles. Variable-temperature direct current (dc) magnetic susceptibility data were collected for complex 1 in the 1.8-300 K temperature range in a 1 T applied field. The chi(M)T value steadily decreases from 56 cm(3) K mol(-)(1) at 300 K to 48.3 cm(3) K mol(-)(1) at 30 K and then increases slightly to reach a maximum value of 48.6 cm(3) K mol(-)(1) at 15 K before dropping rapidly to 40.3 cm(3) K mol(-)(1) at 5 K. The ground-state spin of complex 1 was established by magnetization measurements in the 0.1-2.0 T and 1.80-4.00 K ranges. Fitting of the data by a matrix-diagonalization method to a model that assumes only the ground state is populated and incorporating only axial zero-field splitting (DS(z)()(2)), gave a best fit of S = 10, g = 1.96 and D = -0.10 cm(-)(1). The ac magnetization measurements performed on complex 1 in the 1.8-8 K range in a 3.5 G ac field oscillating at 50-1000 Hz showed frequency-dependent ac susceptibility signals below 3 K. Single-crystal hysteresis loop and relaxation measurements indicate loops whose coercivities are strongly temperature and time dependent, increasing with decreasing temperature and increasing field sweep rate, as expected for the superparamagnetic-like behavior of a single-molecule magnet, with a blocking temperature (T(B)) of approximately 1.3 K.  相似文献   

4.
The employment of the dianion (dpkd(2-)) of the gem-diol form of di-2-pyridylketone (dpk) as a tetradentate chelate in manganese chemistry is reported, and the synthesis, crystal structure, and magnetochemical characterization of [Mn26O16(OMe)12(dpkd)12(MeOH)6](OH)6 x solv (3 x solv) are described. The reaction of Mn(ClO4)2 x 6 H2O, dpk, NaOMe, and NEt3 (2:1:4:2) in MeCN/MeOH affords complex 3, which possesses a rare metal topology and is mixed-valence (4 Mn(II), 22 Mn(III)). The complicated [Mn26(mu4-O)10(mu3-O)6(mu3-OMe)12(mu-OR)12](18+) core of 3 consists of an internal Mn(III)16 cage of adjacent Mn4 tetrahedra surrounded by an external Mn(II)4Mn(III)6 shell. The latter is held together by the alkoxide arms of twelve eta(1):eta(2):eta(1):eta(1):mu3 dpkd(2-) groups. Variable-temperature, solid-state direct current (dc), and alternating current (ac) magnetization studies were carried out on 3 in the 1.8-300 K range. Complex 3 is predominantly antiferromagnetically coupled with a resulting S = 6 ground state, a conclusion confirmed by the in-phase (chi'(M)) ac susceptibility data. The observation of out-of-phase (chi'(M)) ac susceptibility signals suggested that 3 might be a single-molecule magnet, and this was confirmed by single-crystal magnetization vs dc field sweeps that exhibited hysteresis, the diagnostic property of a magnet. Combined ac chi'(M) and magnetization decay vs time data collected below 1.1 K were used to construct an Arrhenius plot; the fit of the thermally activated region above approximately 0.1 K gave U(eff) = 30 K, where U(eff) is the effective relaxation barrier. At lower temperatures, the complex exhibits temperature-independent relaxation, characteristic of ground-state quantum tunneling of magnetization between the lowest-lying M(s) = +/-6 levels. The combined work demonstrates the ligating flexibility of dipyridyl-diolate chelates and their usefulness in the synthesis of polynuclear Mn(x) clusters with interesting magnetic properties, without requiring the co-presence of carboxylate ligands.  相似文献   

5.
The synthesis and structural, spectroscopic, and magnetic characterization of a Mn25 coordination cluster with a large ground-state spin of S = 51/2 are reported. Reaction of MnCl2 with pyridine-2,6-dimethanol (pdmH2) and NaN3 in MeCN/MeOH gives the mixed valence cluster [Mn25O18(OH)2(N3)12(pdm)6(pdmH)6]Cl2 (1; 6Mn(II), 18Mn(III), Mn(IV)), which has a barrel-like cage structure. Variable temperature direct current (dc) magnetic susceptibility data were collected in the 1.8-300 K temperature range in a 0.1 T field. Variable-temperature and -field magnetization (M) data were collected in the 1.8-4.0 K and 0.1-7 T ranges and fit by matrix diagonalization assuming only the ground state is occupied at these temperatures. The fit parameters were S = 51/2, D = -0.020(2) cm(-1), and g = 1.87(3), where D is the axial zero-field splitting parameter. Alternating current (ac) susceptibility measurements in the 1.8-8.0 K range and a 3.5 G ac field oscillating at frequencies in the 50-1500 Hz range revealed a frequency-dependent out-of-phase (chi(M)') signal below 3 K, suggesting 1 to be a single-molecule magnet (SMM). This was confirmed by magnetization vs dc field sweeps, which exhibited hysteresis loops but with no clear steps characteristic of resonant quantum tunneling of magnetization (QTM). However, magnetization decay data below 1 K were collected and used to construct an Arrhenius plot, and the fit of the thermally activated region above approximately 0.5 K gave U(eff)/k = 12 K, where U(eff) is the effective relaxation barrier. The g value and the magnitude and sign of the D value were independently confirmed by detailed high-frequency electron paramagnetic resonance (HFEPR) spectroscopy on polycrystalline samples. The combined studies confirm both the high ground-state spin S = 51/2 of complex 1 and that it is a SMM that, in addition, exhibits QTM.  相似文献   

6.
The preparation and properties of the first strontium-manganese molecular complex are described. The reaction of (NBu(n)4)[Mn4O2(O2CPh)9(H 2O)] (4Mn(III)) with Sr(ClO4)2 in MeCN/MeOH led to the isolation of [SrMn14O11(OMe)3(O2CPh)18(MeCN)2] ( 1; 13Mn(III), Mn(II)). The structure of 1 consists of two [Mn4O3(OMe)] cubane units attached to a central, near-planar, trinuclear [Mn3O4] unit, to which are also attached a Mn and a Sr above the plane and a [Mn2O(OMe)] rhomb below the plane. Peripheral ligation is provided by 18 bridging benzoate and two terminal MeCN groups. Variable-temperature and -field dc magnetization (M) data were collected in the 1.8-10 K and 0.1-4.0 T ranges and fit by matrix diagonalization methods to give S = 9/2, D = -0.50(5) cm(-1), and g = 1.88(10), where S is the ground-state spin and D is the axial zero-field splitting parameter. Magnetization versus dc field sweeps at various temperatures and scan rates exhibited hysteresis loops, confirming 1 to be a new single-molecule magnet. Because complex 1 is the initial molecular example of intimately associated Mn and Sr atoms, Sr EXAFS studies have been performed for the first time on a synthetic Sr-containing molecule. This has also allowed comparisons with the EXAFS data on the Sr-substituted water oxidizing complex (WOC) of Photosystem II (PS II), which contains a SrMn4 complex.  相似文献   

7.
A new synthetic procedure has been developed in Mn cluster chemistry involving reductive aggregation of permanganate (MnO4-) ions in MeOH in the presence of benzoic acid, and the first products from its use are described. The reductive aggregation of NBu(n)4MnO4 in MeOH/benzoic acid gave the new 4Mn(IV), 8Mn(III) anion [Mn12O12(OMe)2(O2CPh)16(H2O)2]2-, which was isolated as a mixture of two crystal forms (NBu(n)4)2[Mn12O12(OMe)2(O2CPh)16(H2O)2].2H2O.4CH2Cl2 (1a) and (NBu(n)4)2[Mn12O12(OMe)2(O2CPh)16(H2O)2].2H2O.CH2Cl2 (1b). The anion of 1 contains a central [Mn(IV)4(mu3-O)2(mu-O)2(mu-OMe)2]6+ unit surrounded by a nonplanar ring of eight Mn(III) atoms that are connected to the central Mn4 unit by eight bridging mu3-O2- ions. This compound is very similar to the well-known [Mn12O12(O2CR)16(H2O)4] complexes (hereafter called "normal Mn12"), with the main difference being the structure of the central cores. Longer reaction times (approximately 2 weeks) led to isolation of polymeric [Mn(OMe)(O2CPh)2]n2, which contains a linear chain of repeating [Mn(III)(mu-O2CPh)2(mu-OMe)Mn(III)] units. The chains are parallel to each other and interact weakly through pi-stacking between the benzoate rings. When KMnO4 was used instead of NBu(n)4MnO4, two types of compounds were obtained, [Mn12O12(O2CPh)16(H2O)4] (3), a normal Mn12 complex, and [Mn4O2(O2CPh)8(MeOH)4].2MeOH (4.2MeOH), a new member of the Mn4 butterfly family. The cyclic voltammogram of 1 exhibits three irreversible processes, two reductions and one oxidation. One-electron reduction of 1 by treatment with 1 equiv of I- in CH2Cl2 gave (NBu(n)4[Mn12O12(O2CPh)16(H2O)3].6CH2Cl2 (5.6CH2Cl2), a normal Mn12 complex in a one-electron reduced state. The variable-temperature magnetic properties of 1, 2, and 5 were studied by both direct current (dc) and alternating current (ac) magnetic susceptibility measurements. Variable-temperature dc magnetic susceptibility studies revealed that (i) complex 1 possesses an S = 6 ground state, (ii) complex 2 contains antiferromagnetically coupled chains, and (iii) complex 5 is a typical [Mn12]- cluster with an S = 19/2 ground state. Variable-temperature ac susceptibility measurements suggested that 5 and both isomeric forms of 1 (1a,b) are single-molecule magnets (SMMs). This was confirmed by the observation of hysteresis loops in magnetization vs dc field scans. In addition, 1a,b, like normal Mn12 clusters, display both faster and slower relaxing magnetization dynamics that are assigned to the presence of Jahn-Teller isomerism.  相似文献   

8.
The synthesis, crystal structures, and magnetochemical characterization of two new Mn clusters [Mn(8)O(2)(O(2)CPh)(10)(hmp)(4)(MeOH)(2)] (1; 6Mn(II), 2Mn(III)) and [Mn(16)O(8)(OH)(2)(O(2)CPh)(12)(hmp)(10)(H(2)O)(2)](O(2)CPh)(2) (2; 6Mn(II), 10Mn(III)) are reported. They were obtained from the use of 2-(hydroxymethyl)pyridine (hmpH) under the same reaction conditions but differing in the presence or absence of added base. Thus, the reaction of hmpH with Mn(O(2)CPh)(2) in CH(2)Cl(2)/MeOH led to isolation of octanuclear complex 1, whereas the analogous reaction in the presence of NEt(3) gave hexadecanuclear complex 2. Complexes 1 and 2 possess either very rare or unprecedented core structures that are related to each other: that of 1 can be described as a linked pair of incomplete [Mn(4)O(3)] cubanes, while that of 2 consists of a linked pair of complete [Mn(4)O(4)] cubanes, on either side of which is attached a tetrahedral [Mn(4)(μ(4)-O)] unit. Solid-state direct current (dc) and alternating current (ac) magnetic susceptibility measurements on 1 and 2 establish that they possess S = 5 and 8 ground states, respectively. Complex 2 exhibits frequency-dependent out-of-phase (χ(M)") ac susceptibility signals at temperatures below 3 K suggestive of a single-molecule magnet (SMM). Magnetization versus applied dc field sweeps on single crystals of 2·10MeOH down to 0.04 K exhibited hysteresis, confirming 2 to be a new SMM. Comparison of the structure of 2 (Mn(16)) with Mn(12) or Mn(6) clusters previously obtained under the same reaction conditions but with two Me or two Ph groups, respectively, added next to the alkoxide O atom of hmp(-) indicate their influence on the nuclearity and structure of the products as being due to the overall bulk of the chelate plus the decreased ability of the O atom to bridge.  相似文献   

9.
The three novel clusters [Mn6O4(OMe)2(OAc)4(Mesalim)4] (3), [Mn8O2(OH)2(OMe)12(OAc)2(Mesalim)4] (4), and [Fe10O4(OMe)14Cl2(Mesalim)6] (5) have been synthesized from a simple bidentate ligand HMesalim (HMesalim = methyl salicylimidate). Starting from the mononuclear complex [Mn(Mesalim)2(OAc)(MeOH)].MeOH (1), either the hexanuclear complex 3 or the octanuclear complex 4 is obtained after recrystallization, depending upon the reaction conditions and solvents used. Similarly, starting from the purple-colored mononuclear complex [Fe(Mesalim)2Cl] (2), the orange-colored decanuclear iron(III) cluster 5 has been obtained upon recrystallization from methanol. Complex 3, which could also be prepared directly from manganese acetate and the ligand, has a face-sharing double-cubane [Mn6O6] core, unique in transition metal chemistry. Compounds 4 and 5 are composed of [M3O4] partial cubanes. All complexes belong to a class of oxo-bridged cubic close-packed molecular clusters resembling the metal oxide/hydroxide ores. Complex 4 exhibits intramolecular ferromagnetic interactions, as evidenced from dc magnetic susceptibility studies (1.8-300 K), resulting in a high-spin ground state, probably with S(T) = 8. Complex 4 displays single molecule magnet behavior as indicated by frequency and temperature dependences of its ac susceptibility. An Arrhenius plot gave relatively large experimental activation energy of 36.0 K. The magnetic properties of complexes 3 and 5 are dominated by antiferromagnetic interactions leading to zero-spin ground states.  相似文献   

10.
The reaction of manganese(II) acetate, 1,1,1-tris(hydroxymethyl)methane (H3thme), and triethylamine in methanol leads to the formation of [Mn12O2(OMe)2(thme)4(OAc)10(H2O)4].2MeOH. The [Mn(III)4Mn(II)8] core consists of a central [Mn(III)4O6] rhombus sandwiched by two [Mn(II)4O7] fragments. Frequency-dependent ac susceptibility and hysteresis loops in the magnetization indicate single-molecule magnet behavior with a pure quantum-tunneling regime of relaxation below 0.2 K.  相似文献   

11.
Convenient, high-yield routes have been developed to [Fe 10(OMe) 20(O 2CR) 10] ( 1) "ferric wheels" involving the alcoholysis of [Fe 3O(O 2CR) 6(H 2O) 3] (+) salts in MeOH in the presence of NEt 3. Reactivity studies have established [Fe 10(OMe) 20(O 2CMe) 10] ( 1a) to undergo clean carboxylate substitution with a variety of other RCO 2H groups to the corresponding [Fe 10(OMe) 20(O 2CR) 10] product. In contrast, the reaction with phenol causes a nuclearity change to give a smaller [Fe 8(OH) 4(OPh) 8(O 2CR) 12] ( 2) wheel. Similarly, reactions of [Fe 10(OMe) 20(O 2CR) 10] with the bidentate chelate ethylenediamine (en) cause a structural change to give either [Fe 8O 5(O 2CMe) 8(en) 8](ClO 4) 6 ( 3) or [Fe 2O(O 2CBu (t))(en) 4](NO 3) 3 ( 4), depending on conditions. Complex 3 possesses a "Christmas-star" Fe 8 topology comprising a central planar [Fe 4(mu 4-O)] (10+) square subunit edge-fused to four oxide-centered [Fe 3(mu 3-O)] (7+) triangular units. Variable-temperature, solid-state dc and ac magnetization studies on complexes 1a- 4 in the 5.0-300 K range established that all the complexes possess an S = 0 ground state. The magnetic susceptibility data for 4 were fit to the theoretical chi M versus T expression derived by the use of an isotropic Heisenberg spin Hamiltonian and the Van Vleck equation, and this revealed an antiferromagnetic exchange parameter with a value of J = -107.7(5) cm (-1). This value is consistent with that predicted by a previously published magnetostructural relationship. Theoretically computed values of the exchange constants in 3 were obtained with the ZILSH method, and the pattern of spin frustration within its core and the origin of its S = 0 ground state have been analyzed in detail.  相似文献   

12.
The syntheses, structures and magnetic properties of three new MnIII clusters, [Mn26O17(OH)8(OMe)4F10(bta)22(MeOH)14(H2O)2] (1), [Mn(0O6(OH)2(bta)8(py)8F8] (2) and [NHEt3]2[Mn3O(bta)6F3] (3), are reported (bta=anion of benzotriazole), thereby demonstrating the utility of MnF3 as a new synthon in Mn cluster chemistry. The "melt" reaction (100 degrees C) between MnF(3) and benzotriazole (btaH, C6H5N3) under an inert atmosphere, followed by dissolution in MeOH produces the cluster [Mn26O17(OH)8(OMe)4F10(bta)22(MeOH)14(H2O)2] (1) after two weeks. Complex 1 crystallizes in the triclinic space group P1, and consists of a complicated array of metal tetrahedra linked by mu3-O2- ions, mu3- and mu2-OH- ions, mu2-MeO- ions and mu2-bta- ligands. The "simpler" reaction between MnF3 and btaH in boiling MeOH (50 degrees C) also produces complex 1. If this reaction is repeated in the presence of pyridine, the decametallic complex [Mn10O6(OH)2(bta)8(py)8F8] (2) is produced. Complex 2 crystallizes in the triclinic space group P1 and consists of a "supertetrahedral" [Mn(III)10] core bridged by six mu3-O2- ions, two mu3-OH- ions, four mu2-F- ions and eight mu2-bta- ions. The replacement of pyridine by triethylamine in the same reaction scheme produces the trimetallic species [NHEt3]2[Mn3O(bta)6F3] (3). Complex 3 crystallises in the monoclinic space group P2(1)/c and has a structure analogous to that of the basic metal carboxylates of general formula [M3O(RCO2)6L3]0/+, which consists of an oxo-centred metal triangle with mu2-bta- ligands bridging each edge of the triangle and the fluoride ions acting as the terminal ligands. DC magnetic susceptibility measurements in the 300-1.8 K and 0.1-7 T ranges were investigated for all three complexes. For each, the value of chi(M)T decreases with decreasing temperatures; this indicates the presence of dominant antiferromagnetic exchange interactions in 1-3. For complex 1, the low-temperature value of chi(M)T is 10 cm(3) K mol(-1) and fitting of the magnetisation data gives S=4, g=2.0 and D=-0.90 cm(-1). For complex 2, the value of chi(M)T falls to a value of approximately 5.0 cm(3) K mol(-1) at 1.8 K, which is consistent with a small spin ground state. For the triangular complex 3, the best fit to the experimental chi(M)T versus T data was obtained for the following parameters: Ja = -5.01 cm(-1), Jb = +9.16 cm(-1) and g=2.00, resulting in an S=2 spin ground state. DFT calculations on 3, however, suggest an S=1 or S=0 ground state with J(a)=-2.95 cm(-1) and J(b)=-2.12 cm(-1). AC susceptibility measurements performed on 1 in the 1.8-4.00 K range show the presence of out-of-phase AC susceptibility signals, but no peaks. Low-temperature single-crystal studies performed on 1 on an array of micro-SQUIDS show the time- and temperature-dependent hysteresis loops indicative of single-molecule magnetism behaviour.  相似文献   

13.
Two new heptanuclear Mn clusters, [Mn7O5(OMe)2(O2CPh)9(terpy)] (1) and [Mn7O5(OCH2Ph)2(O2CPh)9(terpy)] (2), were prepared from the partial alcoholysis of the trinuclear complex [Mn3O(O2CPh)6(py)2(H2O)] (3) in the presence of terpy (terpy = 2,2':6',2' '-terpyridine). Complexes 1 and 2 crystallize in the triclinic P and the orthorhombic Pbca space groups, respectively. The clusters are both mixed valent, containing three Mn oxidation states: MnIV, 5MnIII, and MnII. The Mn ions are held together by nine doubly bridging benzoates, four mu3-O2- ions, one mu5-O2- ion, and either two mu-MeO- (1) or two mu-PhCH2O- (2) groups. The single terpy chelate in each complex is attached to the MnII ion. The core topology is novel and very unusual, comprising a cubane and a butterfly unit fused by sharing a MnIII and the mu5-O2- ion. Solid-state dc and ac magnetic susceptibility studies establish that complexes 1 and 2 both possess an S = 6 ground-state spin. Fits of variable-temperature and -field magnetization data gave S = 6, g = 1.88, and D = -0.21 cm-1 for 1 and S = 6, g = 1.86, and D = -0.18 cm-1 for 2. Single-crystal magnetization vs dc field scans down to 0.1 K for 2 show only very little hysteresis at 0.1 K.  相似文献   

14.
The reaction of [Mn(3)O(O(2)CMe)(6)(py)(3)](ClO(4)) (1; 3Mn(III)) with [Mn(10)O(4)(OH)(2)(O(2)CMe)(8)(hmp)(8)](ClO(4))(4) (2; 10Mn(III)) in MeCN affords the new mixed-valent complex [Mn(21)O(14)(OH)(2)(O(2)CMe)(16)(hmp)(8)(pic)(2)(py)(H(2)O)](ClO(4))(4) (3; 3Mn(II)-18Mn(III); hmp(-) is the anion of 2-(hydroxymethyl)pyridine), with an average Mn oxidation state of +2.85. Complex 3.7MeCN crystallizes in the triclinic space group P. The structure consists of a low symmetry [Mn(21)(micro(4)-O)(4)(micro(3)-O)(12)(micro-O)(16)] core, with peripheral ligation provided by 16 MeCO(2)(-), 8 hmp(-), and 2 pic(-) groups and one molecule each of water and pyridine. The magnetic properties of 3 were investigated by both dc and ac magnetic susceptibility measurements. Fitting of dc magnetization data collected in the 0.1-0.8 T and 1.8-4.0 K ranges gave S = (17)/(2), D approximately -0.086 cm(-)(1), and g approximately 1.8, where S is the molecular spin of the Mn(21) complex and D is the axial zero-field splitting parameter. ac susceptibility studies in the 10-997 Hz frequency range reveal the presence of a frequency-dependent out-of-phase ac magnetic susceptibility (chi(M)' ') signal consistent with slow magnetization relaxation rates. Fitting of dc magnetization decay versus time data to the Arrhenius equation gave a value of the effective barrier to relaxation (U(eff)) of 13.2 K. Magnetization versus applied dc field sweeps exhibited hysteresis. Thus, complex 3 is a new member of the small but growing family of single-molecule magnets.  相似文献   

15.
The syntheses and characterization of two new, highly soluble, single-molecule magnets [Mn12O12(CF3COO16(H2O)4].2CF3COOH.4H2O (1) and Mn12O12(CF3COO16(H2O)4].CF3COOH.7H2O (2) are reported. Compound 1 was isolated from the reaction of Mn12O12(CF3COO16(H2O)4] with trifluoroacetic acid in CH2Cl2. Compound 1 crystallizes in the tetragonal space group Ifourmacr; (No. 82) with unit cell parameters a = b = 18.128(3) A, c = 13.048(3) A, V = 4287.9(19) A3, Z = 2 and is isostructural to [Mn12O12(CH3COO)16(H2O)4]. Compound 2 was prepared from the reaction of Mn12O12(CF3COO16(H2O)4] with neat trifluoroacetic acid, and crystallizes in the monoclinic space group P2(1)/n (No. 14) with unit cell parameters a = 15.221(8) A, b = 21.870(12) A, c = 27.217(15) A, beta = 90.53(1) degrees, V = 9060(9) A3, and Z = 4. The dc magnetic susceptibility measurements in the 2-300 K temperature range support a high-spin ground state. The magnetization data collected in the 1-7 T field range from 1.8 to 4.0 K were best fit to the parameters S = 10, g = 2.15, D = -0.65 cm(-1), and E = 0 cm(-1) for 1 and S = 10, g = 1.87, D = -0.34 cm(-1), and E = -0.10 cm(-1) for 2. The ac susceptibility data for compound 1 reveal out-of-phase (chi(m)") signals in the 4-7 K temperature range, whereas the chi(m)" signals for compound 2 appear below temperatures of 4 K. This variation in blocking temperatures is a consequence of the two different crystallographic forms of compounds 1 and 2. Compound 1 exhibits the same structural geometry and distortions found in [Mn12O12(CH3COO)16(H2O)4], while compound 2 is of lower molecular symmetry with two Jahn-Teller axes of distortion being oriented along oxide ligands. This different structural arrangement facilitates a different tunneling pathway that leads to a lower effective barrier for magnetization reorientation for compound 2. The substitution of the acetate ligands by trifluoroacetic acid was monitored by mass spectrometry, which is a convenient tool for judging completion of the substitution process.  相似文献   

16.
The reaction of 1/3 equivalent of CuCl2.2H2O with MnCl2.4H2O and 5-bromo-2-salicylideneamino-1-propanol (H(2)5-Br-sap) in methanol gave dark brown crystals of [MnIIICuIICl(5-Br-sap)2(MeOH)] (1). Complex 1 has an alkoxo-bridged dinuclear core of MnIII and CuII ions, which have elongated octahedral and square-planar coordination geometries, respectively. In dc magnetic susceptibility measurements, chi(m)T values increased as the temperature was lowered, followed by a sudden decrease below 20 K. This behavior is indicative of the occurrence of intramolecular ferromagnetic interactions, and fitting gave an S=5/2 spin ground state with an exchange coupling constant J(MnCu) of +78 cm(-1). Magnetization data collected as a function of temperature and applied magnetic field were analyzed by using a spin Hamiltonian with isotropic Zeeman and axial zero-field splitting (ZFS) terms, and a negative D(5/2) value (-1.86 cm(-1)) was obtained. A high-field EPR (HFEPR) spectrum (342.0 GHz) at 4.2 K was composed of four peaks, and two additional peaks at higher magnetic field appeared as the temperature was increased. The temperature dependences in the HFEPR spectra are indicative of a negative D(5/2) value, and fitting of the data gave D(5/2)=-1.81 cm(-1). In the ac magnetic susceptibility measurements, frequency dependent in-phase (chi(m)') and out-of-phase (chi(m)') signals with peak maxima at 0.7-1.5 K were observed and small peaks below 0.7 K appeared. The ac susceptibility data supports that 1 is a single-molecule magnet (SMM). Arrhenius plots for the chi(m)' peaks from 0.7-1.5 K gave the re-orientation energy barrier (DeltaE) of 10.5 K with a pre-exponential factor of 8.2x10(-8) s.  相似文献   

17.
The novel octanuclear cluster [Mn8O2(OH)2(OMe)12(OAc)2(Mesalim)4] (1) presents SMM behaviour with a relatively high experimental energy barrier (eff/kB= 36.0 K) as shown by its dc and ac magnetic properties.  相似文献   

18.
The synthesis and characterization of a family of Mn(2)(III)Mn(2)(II)Ln(III)(2) complexes (Ln = Gd (1), Tb (2), Dy (3), and Ho (4)) of formula [Mn(4)Ln(2)O(2)(O(2)CBu(t))(6)(edteH(2))(2)(NO(3))(2)] are reported, where edteH(4) is N,N,N',N'-tetrakis(2-hydroxyethyl)ethylenediamine. The analogous Mn(4)Y(2) (5) complex has also been prepared. They were obtained from reaction of Ln(NO(3))(3) or Y(NO(3))(3) with Mn(O(2)CBu(t))(2), edteH(4), and NEt(3) in a 2:3:1:2 molar ratio. The crystal structures of representative 1 and 2 were obtained, and their core consists of a face-fused double-cubane [Mn(4)Ln(2)(μ(4)-O(2-))(2)(μ(3)-OR)(4)] unit. Such double-cubane units are extremely rare in 3d metal chemistry and unprecedented in 3d-4f chemistry. Variable-temperature, solid-state dc and ac magnetic susceptibility studies on 1-5 were carried out. Fitting of dc χ(M)T vs T data for 5 gave J(bb) (Mn(III)···Mn(III)) = -32.6(9) cm(-1), J(wb) (Mn(II)···Mn(III)) = +0.5(2) cm(-1), and g = 1.96(1), indicating a |n, 0, n> (n = 0-5) 6-fold-degenerate ground state. The data for 1 indicate an S = 12 ground state, confirmed by fitting of magnetization data, which gave S = 12, D = 0.00(1) cm(-1), and g = 1.93(1) (D is the axial zero-field splitting parameter). This ground state identifies the Mn(II)···Gd(III) interactions to be ferromagnetic. The ac susceptibility data independently confirmed the conclusions about 1 and 5 and revealed that 2 displays slow relaxation of the magnetization vector for the Mn(4)Tb(2) analogue 2. The latter was confirmed as a single-molecule magnet by observation of hysteresis below 0.9 K in magnetization vs dc field scans on a single crystal of 2·MeCN on a micro-SQUID apparatus. The hysteresis loops also displayed well-resolved quantum tunneling of magnetization steps, only the second 3d-4f SMM to do so.  相似文献   

19.
The employment of the anion of 2,6-diacetylpyridine dioxime (dapdoH2) as a pentadentate chelate in transition metal cluster chemistry is reported. The syntheses, crystal structures, and magnetochemical characterization are described for [Mn6O2(OMe)2(dapdo)2(dapdoH)4](ClO4)2 (1), [Mn6O2(OMe)2(dapdo)2(dapdoH)4][Ca(NO3)4] (2), and [Mn8O4(OH)4(OMe)2(N3)2(dapdo)2(dapdoH)2(H2O)2] (3). The reaction of [Mn3O(O2CMe)6(py)3](ClO4) with 3 equiv of dapdoH2 (with or without 2 equiv of NEt3) in MeOH gave 1. The same cation, but with a [Ca(NO3)4]2- anion, was found in complex 2, which was obtained from the reaction in MeOH between Mn(NO3)2, Ca(NO3)2, and dapdoH2 in the presence of NEt3. In contrast, addition of NaN3 to several reactions comprising MnCl2, dapdoH2, and NEt3 in MeOH gave the octanuclear complex 3. Complexes 1-3 all possess rare topologies and are mixed-valence: 2MnII, 4MnIII for 1 and 2, and 2MnII, 6MnIII for 3. The core of the cation of 1 and 2 consists of two edge-sharing Mn4 tetrahedra at the center of each of which is a micro4-O2- ion. Peripheral ligation is provided by two micro-OMe-, four micro-dapdoH-, and two micro3-dapdo2- groups. The core of 3 consists of two [MnIIMnIII3(micro3-O)2]7+ "butterfly" units linked together by one of the micro3-O2- ions, which thus becomes micro4. Peripheral ligation is provided by four micro-OMe-, two micro-OH-, two micro-dapdoH-, and two micro4-dapdo2- groups. Variable-temperature, solid-state dc and ac magnetization studies were carried out on complexes 1-3 in the 5.0-300 K range; the data for 1 and 2 are identical. Fitting of the obtained magnetization versus field (H) and temperature (T) data by matrix diagonalization and including only axial anisotropy (zero-field splitting, D) established that 1 possesses an S=5 ground state with D=-0.24 cm(-1). For 3, low-lying excited states precluded obtaining a good fit from the magnetization data, and the ground state was instead determined from the ac data, which indicated an S=1 ground state for 3. The combined work demonstrates the ligating flexibility of pyridyl-dioxime chelates and their usefulness in the synthesis of new polynuclear Mnx clusters without requiring the co-presence of carboxylate ligands.  相似文献   

20.
The reaction of MnF(3) with 5,6-dimethylbenzotriazole (Me(2)BTAH) gives the [Mn(III)(8)] complex [Mn(8)O(4)(OMe)(2)(Me(2)BTA)(6)F(8)(Me(2)BTAH)(MeOH)(8)] and the [Mn(IV)(3)Mn(III)(10)] complex [Mn(13)O(12)(Me(2)BTA)(12)F(6)(MeOH)(10)(H(2)O)(2)]. The octametallic species is an "intermediate" in the formation of the tridecametallic cluster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号