首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
An analytical method was developed for the determination in urine of 2 metabolites of diazinon: 6-methyl-2-(1-methylethyl)-4(1H)-pyrimidinone (G-27550) and 2-(1-hydroxy-1-methylethyl)-6-methyl-4(1H)-pyrimidinone (GS-31144). Two of the urine sample preparation procedures presented rely on gas chromatography/mass selective detection (GC/MSD) in the selected ion monitoring mode for determination of G-27550. For fast sample preparation and a limit of quantitation (LOQ) of 1.0 ppb, urine samples were purified by using ENV+ solid-phase extraction (SPE) columns. For analyte confirmation at an LOQ of 0.50 ppb, classical liquid/liquid partitioning was used before further purification in a silica SPE column. An SPE sample preparation procedure and liquid chromatography/electrospray ionization/mass spectrometry/mass spectrometry (LC/ESI/MS/MS) were used for both G-27550 and GS-31144. The limit of detection was 0.01 ng for G-27550 with GC/MSD, and 0.016 ng when LC/ESI/MS/MS was used for both G-27550 and GS-31144. The LOQ was 0.50 ppb for G-27550 when GC/MSD and the partitioning/SPE sample preparation procedure were used, and 1.0 ppb for the SPE only sample preparation procedure. The LOQ was 1.0 ppb for both analytes when LC/ESI/MS/MS was used.  相似文献   

2.
Using hyphenated analytical techniques, gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS), a study on minor propofol metabolites in human urine was conducted. These techniques allowed identification of two new phase I metabolites (2-(omega-propanol)-6-isopropylphenol and 2-(omega-propanol)-6-isopropyl-1,4-quinol). In addition, their four corresponding conjugates (three glucuronides and one sulphate) were detected. Thus in human urine at least eight conjugate metabolites are produced, derived from four different aglycones (propofol; 2, 6-diisopropyl-1,4-quinol; 2-(omega-propanol)-6-isopropylphenol and 2-(omega-propanol)-6-isopropyl-1,4-quinol).  相似文献   

3.
Nandrolone (19‐nortestosterone) is an androgenic anabolic steroid illegally used as a growth‐promoting agent in animal breeding and as a performance enhancer in athletics. Therefore, its use was officially banned in 1974 by the Medical Commission of the International Olympic Committee (IOC). Following nandrolone administration, the main metabolites in humans are 19‐norandrosterone, 19‐norethiocolanolone and 19‐norepiandrosterone, and their presence in urine is the basis of detecting its abuse. The present work was undertaken to determine, in human urine, nandrolone metabolites (phase I and phase II) by developing and comparing multiresidue liquid chromatography/tandem mass spectrometry (LC/MS/MS) and gas chromatography/mass spectrometry (GC/MS) methods. A double extraction by solid‐phase extraction (SPE) was necessary for the complete elimination of the interfering compounds. The proposed methods were also tested on a real positive sample, and they allow us to determine the conjugated/free fractions ratio reducing the risk of false positive or misleading results and they should allow laboratories involved in doping control analysis to monitor the illegal use of steroids. The advantages of LC/MS/MS over GC/MS (which is the technique mainly used) include the elimination of the hydrolysis and derivatization steps: it is known that during enzymatic hydrolysis several steroids can be converted into related compounds and deconjugation is not always 100% effective. The validation parameters for the two methods were similar (limit of quantification (LOQ) <1 ng/mL and percentage coefficient of variance (CV%) <16.4), and both were able to confirm unambiguously all the analytes, thus confirming the validity of both techniques. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
A sensitive and robust liquid chromatography/electrospray ion trap mass spectrometry (LC/MS/MS) method has been developed for the quantitative determination of noncovalently bound acridinium free acid in protein-acridinium conjugates. The lower level of quantitation (LOQ) for acridinium free acid was determined to be 0.6 ng. The assay was validated with a linear concentration range of 0.6-60 ng. The method requires minimum sample handling and is specific, reproducible, and provides a new aspect for protein-acridinium conjugate characterization.  相似文献   

5.
A comparison of two methods for the identification and determination of peanut allergens based on europium (Eu)-tagged inductively coupled plasma mass spectrometry (ICP-MS) immunoassay and on liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) with a triple quadrupole mass analyzer was carried out on a complex food matrix like a chocolate rice crispy-based snack. The LC/MS/MS method was based on the determination of four different peptide biomarkers selective for the Ara h2 and Ara h3/4 peanut proteins. The performance of this method was compared with that of a non-competitive sandwich enzyme-linked immunosorbent assay (ELISA) method with ICP-MS detection of the metal used to tag the antibody for the quantitative peanut protein analysis in food. The limit of detection (LOD) and quantitation of the ICP-MS immunoassay were 2.2 and 5 microg peanuts g(-1) matrix, respectively, the recovery ranged from 86 +/- 18% to 110 +/- 4% and linearity was proved in the 5-50 microg g(-1) range. The LC/MS/MS method allowed us to obtain LODs of 1 and 5 microg protein g(-1) matrix for Ara h3/4 and Ara h2, respectively, thus obtaining significantly higher values with respect to the ELISA ICP-MS method, taking into account the different expression for concentrations. Linearity was established in the 10-200 microg g(-1) range of peanut proteins in the food matrix investigated and good precision (RSD <10%) was demonstrated. Both the two approaches, used for screening or confirmative purposes, showed the power of mass spectrometry when used as a very selective detector in difficult matrices even if some limitations still exist, i.e. matrix suppression in the LC/ESI-MS/MS procedure and the change of the Ag/Ab binding with matrix in the ICP-MS method.  相似文献   

6.
HIV protease inhibitors are important antiretroviral drugs which have substantially reduced the morbidity and mortality associated with HIV-1 infection. Recent data have shown relationships between plasma concentrations of the protease inhibitors and clinical response, which makes therapeutic drug monitoring valuable. We have developed and validated an assay, using liquid chromatography coupled with electrospray tandem mass spectrometry (LC/MS/MS), for the routine quantification of the six licensed protease inhibitors (amprenavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir) and the pharmacologically active nelfinavir metabolite M8 in plasma. The sample pretreatment consisted of protein precipitation with a mixture of methanol and acetronitrile using only 100 microl of plasma. Chromatographic separation was performed on an Inertsil ODS3 column (50 x 2.0 mm i.d., particle size 5 microm), with a quick stepwise gradient using an acetate buffer (pH 5) and methanol, at a flow rate of 0.5 ml min(-1). The analytical run time was 5.5 min. The use of a 96-well plate autosampler allowed batch sizes up to 150 patient samples. The triple-quadrupole mass spectrometer was operated in the positive ion mode and multiple reaction monitoring was used for drug quantification. The method was validated over the concentration ranges 0.01-10 microg ml(-1) for indinavir and saquinavir, 0.1-10 microg ml(-1) for amprenavir, 0.05-10 microg ml(-1) for nelfinavir and ritonavir, 0.1-20 microg ml(-1) for lopinavir and 0.01-5 microg ml(-1) for M8. Saquinavir-d(5) and indinavir-d(6) were used as internal standards. The coefficients of variation were always <10% for both intra-day and inter-day precisions for each compound. Mean accuracies were also between the designated limits (+/-15%). The validated concentration ranges proved to be adequate in daily practice. This robust and fast LC/MS/MS assay is now successfully applied for routine therapeutic drug monitoring and pharmacokinetic studies in our hospital.  相似文献   

7.
A rapid, sensitive and robust assay procedure using liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) for the determination of famotidine in human plasma and urine is described. Famotidine and the internal standard were isolated from plasma samples by cation-exchange solid-phase extraction with benzenesulfonic acid (SCX) cartridges. The urine assay used direct injection of a diluted urine sample. The chromatographic separation was accomplished by using a BDS Hypersil silica column with a mobile phase of acetonitrile-water containing trifluoroacetic acid. The MS/MS detection of the analytes was set in the positive ionization mode using electrospray ionization for sample introduction. The analyte and internal standard precursor-product ion combinations were monitored in the multiple-reaction monitoring mode. Assay calibration curves were linear in the concentration range 0.5--500 ng ml(-1) and 0.05--50 microg ml(-1) in plasma and urine, respectively. For the plasma assay, a 100 microl sample aliquot was subjected to extraction. To perform the urine assay, a 50 microl sample aliquot was used. The intra-day relative standard deviations at all concentration levels were <10%. The inter-day consistency was assessed by running quality control samples during each daily run. The limit of quantification was 0.5 ng ml(-1) in plasma and 0.05 microg ml(-1) in urine. The methods were utilized to support clinical pharmacokinetic studies in infants aged 0-12 months.  相似文献   

8.
For the detection of anabolic steroid residues in bovine urine, a highly sensitive liquid chromatographic/electrospray ionization tandem mass spectrometric (LC/ESI-MS/MS) method was developed using both positive and negative ionization. For four compounds the ESI mode was not sensitive enough and gas chromatographic/mass spectrometric GC/MS detection was therefore still necessary as a complementary method. The sample clean-up consisted of solid-phase extraction (SPE) on a C(18) column followed by enzymatic hydrolysis and a second solid-phase extraction on a combination of a C(18) and a NH(2) column. After this last SPE clean-up, the eluate was split into two equal aliquots. One aliquot was further purified and after derivatization used for GC/MS analysis. The other aliquot was analyzed with LC/MS/MS in both ESI+ and ESI- modes. The method was validated according to the European Commission Decision 2002/657/EC. Decision limits (CCalpha) were between 0.16 and 1 ng ml(-1) for the compounds detected with the LC/MS/MS method. The developed method is used in routine analysis in our laboratory.  相似文献   

9.
A new method is described for the qualitative and quantitative analysis of cyanide, a very short-acting and powerful toxic agent, in human whole blood. It involves the conversion of cyanide into hydrogen cyanide and its subsequent headspace solid-phase microextraction (HS-SPME) and detection by gas chromatography/mass spectrometry (GC/MS) in selected ion monitoring (SIM) mode. Optimizing the conditions for the GC/MS (type of column, injection conditions, temperature program) and SPME (choice of SPME fiber, effect of salts, adsorption and desorption times, adsorption temperature) led to the choice of a 75-microm carboxen/polydimethylsiloxane SPME fiber, with D3-acetonitrile as internal standard, and a capillary GC column with a polar stationary phase. Method validation was carried out in terms of linearity, precision and accuracy in both aqueous solutions and blood. The limit of detection (LOD) and limit of quantitation (LOQ) were determined only in aqueous solutions. The assay is linear over three orders of magnitude (water 0.01-10, blood 0.05-10 microg/mL); and the LOD and LOQ in water were 0.006 and 0.01 microg/mL, respectively. Good intra- and inter-assay precision was obtained, always <8%. The method is simple, fast and sensitive enough for the rapid diagnosis of cyanide intoxication in clinical and forensic toxicology.  相似文献   

10.
Gestrinone was studied by high performance liquid chromatography (HPLC) for screening and by gas chromatography/mass spectrometry (GC/MS) for confirmation. When the chromatograms of blank, spiked urine and dosed urine were compared by HPLC, two unknown metabolites were found and these were excreted as the conjugated forms. Metabolites 1 and 2 were tested by LC/MS and LC/MS/MS and both had parent ions at m/z 325. The fragment ion of metabolite 1 was at m/z 263 and ions for metabolite 2 were m/z 307 [MH - H(2)O](+), 289, 279 and 241. LC/MS/MS of m/z 263 as the parent ion of metabolite 1 gave fragment ions at m/z 245 and 217, which were assumed to be [263 - H(2)O](+) and [235 - H(2)O](+), respectively. The trimethylsilyl (TMS)-enol-TMS ether derivative of gestrinone displayed three peaks in its GC/MS chromatogram, formed by tautomerism.  相似文献   

11.
A method has been developed for the simultaneous quantification of metformin (I) and glipizide (II) in human plasma. It is based on high-performance liquid chromatography with electrospray ionization tandem mass (LC-ESI-MS/MS) spectrometric detection in positive ionization mode. Phenformin (III) and gliclazide (IV) were used as internal standards for I and II, respectively. The MS/MS detection was performed in multiple reaction monitoring (MRM) mode. The precursor-product ion combinations of m/z 130 --> 71, 446 --> 321, 206 --> 60 and 324 --> 127 were used to quantify I, II, III and IV, respectively. This method was validated in the concentration ranges of 0.02-4 microg/mL for I and 0.004-0.8 microg/mL for II. It was utilized to support a clinical pharmacokinetic study after single dose oral administration of a combination of I and II.  相似文献   

12.
On-line atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) liquid chromatography/mass spectrometry (LC/MS) were evaluated for the analysis of a variety of steroids. Steroids were classified into three major groups based on the spectra and the sensitivities observed: (I) those containing a 3-one, 4-ene functional group, (II) those containing at least one ketone group without conjugation, and (III) those containing hydroxy group(s) only. In the APCI mode, the best sensitivity and the lowest detection limit for all three groups were obtained by using a mobile phase consisting of methanol and 1%–2% acetic acid in water. The APCI spectra were characterized by MH+, MH+-H2O, MH+-2H2O, etc., with the degree of H2O loss being compound dependent: group I steroids produced stable MH+ and group III steroids showed extensive water loss. In the electrospray mode the best sensitivity and the lowest detection limit for the first two groups were obtained when pure methanol and water were used as the mobile phase. This condition produced abundant stable MNa+ due to ubiquitous sodium. Detection limits in the 5–15 pg range can be easily achieved using ESI LC/MS. Addition of ammonium acetate or use of acetonitrile in the mobile phase, common in the LC/MS analysis of steroids, decreased the sensitivity for the group I and II steroids and thus should be avoided. For group III steroids, the detection limit can be improved by the addition of acetic acid to the mobile phase.  相似文献   

13.
An LC/MS/MS-based multiresidue quantitative method was developed for the macrolides erythromycin A, neospiramycin I, oleandomycin, spiramycin I, tilmicosin, and tylosin A in porcine kidney tissues. The Canadian Food Inspection Agency (CFIA) had as part of its analytical scope an LC/UV method for quantification of residues of two macrolide antibiotics, tilmicosin and tylosin A, in the kidney, liver, and muscle of cattle, swine, and poultry. The method could not reliably detect concentrations below 10 microg/kg. To increase the scope of the CFIA's analytical capabilities, a sensitive multiresidue quantitative method for macrolide residues in food animal tissues was required. Porcine kidney samples were extracted with acetonitrile and alkaline buffer and cleaned-up using silica-based C18 SPE cartridges. Sample extracts were analyzed using LC/MS/MS with positive electrospray ionization. Fitness for purpose was verified in a single-laboratory validation study using a second analyst. The working analytical range was 5 to 50 microg/kg. LOD and LOQ were 0.5 to 0.6 microg/kg and 1.5 to 3.0 microg/kg, respectively. Limits of identification were 0.5 to 2.0 microg/kg. Relative intermediate precisions were 8 to 17%. Average absolute recoveries were 68 to 76%.  相似文献   

14.
Studies are described on the phase I and II metabolism and the toxicological analysis of the piperazine-derived designer drug 1-(3-trifluoromethylphenyl)piperazine (TFMPP) in rat urine using gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS). The identified metabolites indicated that TFMPP was extensively metabolized, mainly by hydroxylation of the aromatic ring and by degradation of the piperazine moiety to N-(3-trifluoromethylphenyl)ethylenediamine, N-(hydroxy-3-trifluoromethylphenyl)ethylenediamine, 3-trifluoromethylaniline, and hydroxy-3-trifluoromethylaniline. Phase II reactions included glucuronidation, sulfatation and acetylation of phase I metabolites. The authors' systematic toxicological analysis (STA) procedure using full-scan GC/MS after acid hydrolysis, liquid-liquid extraction and microwave-assisted acetylation allowed the detection of TFMPP and its above-mentioned metabolites in rat urine after single administration of a dose calculated from the doses commonly taken by drug users. Assuming similar metabolism, the described STA procedure should be suitable for proof of an intake of TFMPP in human urine.  相似文献   

15.
Pentazocine has been found to be measurable with much higher sensitivity by gas chromatography (GC)/surface ionization (SI) organic mass spectrometry (OMS) than by the conventional GC/electron ionization (EI) mass spectrometry. The compound was extracted from human whole blood and urine with Sep-Pak C(18) cartridges before analysis by GC/SIOMS; recoveries were > 96.6% for both samples. The calibration curves were linear in the range 6.25-100 ng ml(-1) and the detection limits were 500 pg ml(-1) of a sample by selected ion monitoring (SIM) with GC/SIOMS. The intra- and inter-day relative standard deviations for the determination of pentazocine in whole blood and urine were not greater than 9.6%. The sensitivity for pentazocine obtained by SI-SIM was about 60 times higher than that obtained by EI-SIM. To validate the present GC/SIOMS method for pentazocine, whole blood and urine samples collected from two volunteers 1-6 h after intramuscular injection of 15 mg of pentazocine were analyzed. The concentrations were 13.5-59.3 ng ml(-1) for whole blood and 0.39-4.00 microg ml(-1) for urine.  相似文献   

16.
A gas chromatography/mass spectrometry (GC/MS) method is described which uses negative ion chemical ionization (NCI) and tandem mass spectrometry (MS/MS) for the determination of eight anabolic steroids in human urine. Eight anabolic steroids were derivatized by heptafluorobutyric anhydride (HFBA), and were determined using GC/NCI-MS and GC/NCI-MS/MS. The linear correlation coefficients for calibration in NCI-MS/MS were in the range 0.9880-0.9988. This method of derivatization with HFBA for use with GC/NCI was useful in determinations of 19-norandrosterone, boldenone, 19-noretiocholanolone, 2-methylandrosterone, nandrolone, 1-methyleneandrosterone, 1-methylandrosterone, 4-dihydroboldenone and mesterolone. The detection limits of this procedure were 5-20 ppb at a signal-to-noise (S/N) ratio of 3.  相似文献   

17.
A method for the quantification of clindamycin in animal plasma using high-performance liquid chromatography combined with electrospray ionization mass spectrometry (LC/ESI-MS/MS) is presented. Lincomycin is used as the internal standard. The sample preparation includes a simple deproteinization step with trichloroacetic acid. Chromatographic separation is achieved on an RP-18 Hypersil column using gradient elution with 0.01 M ammonium acetate and acetonitrile as mobile phase. Good linearity was observed in the range 0-10 microg ml(-1). The limit of quantification of the method is 50 ng ml(-1) and the limit of detection is 1.3 ng ml(-1). The method was shown out to be of use for pharmacokinetic studies of clindamycin formulations in dogs.  相似文献   

18.
We developed a rapid and efficient means of determining residues of four nitroimidazoles-i.e., dimetridazole, ipronidazole, metronidazole, and ronidazole-and three hydrophilic metabolites- i.e., 2-hydroxymethyl-1-methyl-5-nitroimidazole, 1 -methyl-2-(2'-hydroxyisopropyl)-5-nitroimidazole, and 1-(2-hydroxyethyl)-2-hydroxymethyl-nitroimidazole--in honey. We applied a QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) procedure improved to suit a nitroimidazole analysis, which is fast (approximately 30 min) and uses less organic solvent. The procedure involves initial single-phase extraction of 5 g of honey with acetonitrile containing 1% acetic acid, followed by liquid-liquid partitioning involving the addition of 5 g sodium chloride, 1.5 g trisodium citrate dihydrate, and 4 g magnesium sulfate. Moreover, matrix from honey was reduced by an SPE method with an alumina-N cartridge. The samples were analyzed using LC/MS/MS. Chromatographic separation of these nitroimidazoles and metabolites was performed in the gradient mode on a pentafluorophenylpropyl-bonded silica column (150x2.0 mm, 3 pm particle size) at 40 degrees C. The mobile phase consisted of a 0.01% acetic acid solution and acetonitrile, and the flow rate was 0.2 mL/min. The method was validated using honey spiked with these nitroimidazoles from 0.1 to 0.5 microg/kg. The overall recovery of the seven nitroimidazoles ranged from 76.1 to 98.5%; intra- and interassay CV values were <9.5 and <14.2%, respectively. The LOQ ranged from 0.1 to 0.5 microg/kg. LC/MS/MS coupled with the QuEChERS method showed good potential as a method for determining nitroimidazole residues in honey.  相似文献   

19.
Human urinary metabolism of the antidepressant bupropion was studied using liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) and liquid chromatography/tandem mass spectrometry (LC/MS/MS). A total of 20 metabolites were detected and identified. The phase I metabolism included formation of morpholinohydroxybupropion, threo- and erythrohydrobupropion, aromatic hydroxylation, butyl group hydroxylation with ketone hydrogenation and dihydroxylation. These metabolites were detected either as the free form or as glucuronide and/or sulphate conjugates. In addition also m-chlorohippuric acid was detected. Of the phase I metabolites, a dihydroxylation to the aromatic ring and to the methyl group in the middle of the substrate molecule was reported here for the first time, as well as eight of the glucuronide conjugates (to hydroxy, dihydroxy, hydroxy and hydrogenation metabolites) and three of the sulphate conjugates (to aromatic hydroxy and hydroxy and hydrogenation metabolites).  相似文献   

20.
A rapid and sensitive LC/electrospray ionization-MS/MS method has been developed for the determination of dodine in fruit samples. Based on a liquid-liquid extraction of 10 g solid fruit homogenate using an acetone-dichloromethane-hexane mixture and acetate ammonium buffer (pH 4.5), this LC/MS/MS procedure was characterized by recoveries above 50%, with good intra-assay precision (RSD < 13%) and interassay precision (RSD < 18%) for seven different matrixes (apple, apricot, cherry, peach, pear, plum, and quince). This method was validated from 5 to 500 microg/kg according to standard guidelines. Its LOD (1 microg/kg) and LOQ (5 microg/kg) were in accordance with recommendations of the European legislation defined for infant food [maximum residue level (MRL) = 10 microg/kg]. The whole procedure was finally tested on 1022 fruit samples intended for commercialization, both infant food samples and samples not intended in particular for babies. In this study, dodine was detected in 27 samples; none exhibited a concentration higher than the MRL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号