首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhuang Y  Zhang D  Ju H 《The Analyst》2005,130(4):534-540
A novel method for rapid, inexpensive, sensitive and selective determination of heroin was proposed by flow injection electrogenerated chemiluminescence (ECL). Zeolite Y sieves were used for the preparation of a ECL sensor by immobilizing tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)3(2+)) in their supercages, which was achieved through the ion exchange properties of the sieves. The electrochemical and ECL behaviors of Ru(bpy)3(2+) immobilized in zeolite Y modified carbon paste electrode was investigated. The immobilized Ru(bpy)3(2+) displayed a pair of surface-controlled redox peaks with an electron transfer rate constant of 1.2 +/- 0.1 s(-1) in 0.1 mol dm(-3) pH 6.3 phosphate buffer. The modified electrode showed an electrocatalytic response to the oxidation of heroin, producing a sensitized ECL signal. The ECL sensor showed a linear response to flow injection of heroin in the range of 2.0-80 micromol dm(-3) with a detection limit of 1.1 micromol dm(-3). This method for heroin determination possessed good sensitivity and reproducibility with a coefficient of variation of 1.99% (n = 15) at 50.0 micromol dm(-3). The ECL sensor showed good selectivity and long-term stability. Its surface could be renewed quickly and reproducibly by a simple polish step.  相似文献   

2.
A flow injection analysis system was built with a liquid core waveguide spectrophotometric detector using an 80 cm Teflon AF-1600 capillary tube (2,2-bistrifluoromethyl-4,5-difluoro-1,3-dioxole/tetrafluoroethylene). The system was applied to determine nitrite ion in river water samples. The lower limit of detection for nitrite was 2.1 nmol dm(-3) (0.1 ng dm(-3) as NO(2)(-)) and the relative standard deviation of measurements was typically 0.56% (n = 5) at 0.21 micromol dm(-3).  相似文献   

3.
Zhuang Z  Su X  Yuan H  Sun Q  Xiao D  Choi MM 《The Analyst》2008,133(1):126-132
CuO nanowires have been prepared and applied for the fabrication of glucose sensors with highly enhanced sensitivity. Cu(OH)(2) nanowires were initially synthesised by a simple and fast procedure, CuO nanowires were then formed simply by removing the water through heat treatment. The structures and morphologies of Cu(OH)(2) and CuO nanowires were characterised by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. The direct electrocatalytic oxidation of glucose in alkaline medium at CuO nanowire modified electrodes has been investigated in detail. Compared to a bare Cu electrode, a substantial decrease in the overvoltage of the glucose oxidation was observed at the CuO nanowire electrodes with oxidation starting at ca. 0.10 V vs. Ag/AgCl (saturated KCl). At an applied potential of 0.33 V, CuO nanowire electrodes produce high and reproducible sensitivity to glucose with 0.49 microA/micromol dm(-3). Linear responses were obtained over a concentration range from 0.40 micromol dm(-3) to 2.0 mmol dm(-3) with a detection limit of 49 nmol dm(-3) (S/N = 3). The CuO nanowire modified electrode allows highly sensitive, low working potential, stable, and fast amperometric sensing of glucose, thus is promising for the future development of non-enzymatic glucose sensors.  相似文献   

4.
Liu S  Ju H 《The Analyst》2003,128(12):1420-1424
A novel renewable reagentless nitrite biosensor based on the direct electron transfer of hemoglobin (Hb) and a new sensing mechanism was proposed by combining the advantageous features of colloidal gold nanoparticle and carbon paste technology. The direct electrochemistry of immobilized Hb displayed a pair of redox peaks with a formal potential of -42 mV (vs. NHE) in 0.2 mol dm(-3) NaAc-HAc buffer (pH 5.5). The immobilized Hb displayed an excellent response to the reduction of NO2(-) with one interfacial charge transfer followed by a chemical reaction (EC) mechanism. Under optimal conditions, the interfacial EC process could be used for the sensitive determination of NO2(-) with a linear range from 0.1 to 9.7 micromol dm(-3) and a detection limit of 0.06 [micro sign]mol dm(-3) at 3sigma. The amperometric determination of high concentrations of NO2(-) based on the irreversible reduction of NO could be performed at pH 4.0 with a linear range from 0.1 to 1.2 mmol dm(-3). The surface of biosensor could be renewed quickly and reproducibly by a simple polish step. The biosensor has been used satisfactorily for nitrite determination in native water samples.  相似文献   

5.
A selective and sensitive analytical procedure for rapid arsenic determination by gas-diffusion flow injection analysis with amperometric detection was developed. The method is based on the arsenite reduction by NaBH(4). Derived arsine diffuses through a PTF membrane into the acceptor flow stream and is amperometrically determined on a platinum working electrode. The limit of detection (3 sigma) at room temperature was 5 microg/dm(3) of As(III). The relative standard deviation for a 1 mg/dm(3) As(III) standard was 1.96% for six repetitive injections. Arsenic(V) was determined after its prereduction with potassium iodide. Arsenic determination was not interferred with by 1 mg/dm(3) Sb(III), 5 mg/dm(3) Sn(II), 10 mg/dm(3) Se(IV), 1 mg/dm(3) As(V), 1 mg/dm(3) hydrasine, 1 mg/dm(3) Fe(II) or 0.5 mg/dm(3) Fe(III) solution. The throughput of this method was 60 analyses per hour. This method was successfully applied to arsenic determination in some power plant waste water samples.  相似文献   

6.
A flow-injection analysis (FIA) for the determination of dopamine has been developed. The method is based on the inhibition effect of dopamine on the iron(II)-induced chemiluminescence (CL) of 10,10'-dimethyl-9,9'-biacridinium dinitrate (lucigenin). The presence of a non-ionic surfactant, polyoxyethylene (23) lauryl ether (Brij 35), caused an increase in the inhibition effect. The present method allows the determination of dopamine over the range 1x10(-8)-2x10(-7) mol dm(-3). The relative standard deviation was 0.7% for eight determinations of 6x10(-8) mol dm(-3) dopamine. The detection limit (S/N=3) was 2x10(-9) mol dm(-3) with the sampling rate of 40 samples h(-1). The effect of other catecholamines and compounds of similar structure on the lucigenin CL reaction was studied: quinone, hydroquinone, norepinephrine, pyrocatechol and l-dopa suppressed the CL intensity.  相似文献   

7.
A plant tissue-based chemiluminescence biosensor for ethanol based on using mushroom (Agaricus bisporus) tissue as the recognition element is proposed in this paper. The principle for ethanol sensing relies on the luminol-potassium hexacyanoferrate(III)-hydrogen peroxide transducer reaction, in which hydrogen peroxide is produced from the ethanol enzymatic catalytic oxidation by oxygen under the catalysis of alcohol oxidase in the tissue column. Under optimum conditions, the method allowed the measurement of ethanol in the range of 0.001 - 2 mmol/l with a detection limit (3 sigma) of 0.2 micromol/l. The relative standard deviation (RSD) was 4.14% (n = 11) for 0.05 mmol/l ethanol. The proposed method has been applied to the determination of ethanol in biological fluids and beverages with satisfactory results.  相似文献   

8.
A chemiluminescence method with potassium permanganate was developed for use as an indicator of organic pollutants in fresh water. This method could be applied to the determination of organic pollutants in seawater as well. However, the flow chemiluminescence method suffered from the interference of chloride ions at the same concentration of seawater because of the production of manganese dioxide in the oxidation of chloride ions with permanganate. The conditions (concentrations of potassium permanganate and sulfuric acid and sample volume, i.e. flow injection method) were chosen to minimize the interference of chloride ions. The chemiluminescence method shows a good correlation with the chemical oxygen demand method on fresh water added artificial sea salt and seawater samples. Natural seawater was analyzed by the chemiluminescence method. The results obtained were compared with those obtained by chemical oxygen demand under the alkaline condition and total organic carbon methods. The chemiluminescence method has higher sensitivity and reproducibility than the conventional chemical oxygen demand and total organic carbon methods.  相似文献   

9.
Artemisinin is an antimalarial drug containing an internal endoperoxide linkage in its structure. A simple, selective and sensitive high-performance liquid chromatography (HPLC)-peroxyoxalate chemiluminescence (PO-CL) method for the determination of artemisinin was developed. This method is based on the fact that endoperoxide in artemisinin structure can be converted to hydrogen peroxide (H(2)O(2)) under ultraviolet (UV) irradiation and the generated hydrogen peroxide can be measured using PO-CL detection. The HPLC-PO-CL system was optimized on a mobile phase, post column chemiluminescence reagent, UV source and irradiation time. In addition, the system was combined with simple liquid-liquid extraction using n-hexane that allowed selective and sensitive determination of artemisinin in serum. The limit of detection using 0.5 mL of blood was 0.062 micromol/L (17.5 ng/mL) at a signal-to-noise ratio of 3. Calibration curve obtained for artemisinin in human serum 4-80 micromol/L (1.1-22.6 microg/mL) showed a good linearity (r = 0.999).  相似文献   

10.
The Dion-Jacobson series of triple-layered perovskite tantalates (MCa2Ta3O10, M = Cs, Na, H, and C6H13NH3) were synthesized to evaluate their photocatalytic activity for overall water splitting to evolve H2/O2 under UV irradiation. The photocatalytic activity was susceptible to the hydration of interlayer space. The hydrous Na phase exhibited much higher activity (H2: 308 micromol.h(-1)) compared to the anhydrous Cs phase (24 micromol.h(-1)) and the hydrous H phase (22 micromol.h(-1)) in the presence of 0.5 wt % Ni impregnated. H2O/D2O isotopic experiment suggested that the hydrated interlayer plays as an active site for water splitting, where the high mobility of water molecule in the interlayer should correlate with the total photocatalytic activity. The FLAPW electronic structure calculation demonstrated that the terminating oxygen site, O4, which faces to the interlayer space, contributes largely to the top of the valence band. Judging from comparison with the double-layered tantalates, MLaTa2O7, in our previous study, the contribution of terminating oxygen site to the band structure is supposed to depend on the number of perovskite layers.  相似文献   

11.
Steady-state fluorescence has been used to study the excited singlet state of ofloxacin (OFLX) in aqueous solutions. Fluorescence emission was found to be pH dependent, with a maximum quantum yield of 0.17 at pH 7. Two pKa*s of around 2 and 8.5 were obtained for the excited singlet state. Laser flash photolysis and pulse radiolysis have been used to study the excited states and free radicals of OFLX in aqueous solutions. OFLX undergoes monophotonic photoionization from the excited singlet state with a quantum yield of 0.2. The cation radical so produced absorbs maximally at 770 nm with an extinction coefficient of 5000 +/- 500 dm3 mol-1 cm-1. This is confirmed by one-electron oxidation in the pulse radiolysis experiments. The hydrated electron produced in the photoionization process reacts with ground state OFLX with a rate constant of 2.0 +/- 0.2 x 10(10) dm3 mol-1 s-1, and the anion thus produced has two absorption bands at 410 nm (extinction coefficient = 3000 +/- 300 dm3 mol-1 cm-1) and at 530 nm. Triplet-triplet absorption has a maximum at 610 nm with an extinction coefficient of 11,000 +/- 1500 dm3 mol-1 cm-1. The quantum yield of triplet formation has been determined to be 0.33 +/- 0.05. In the presence of oxygen, the triplet reacts to form both excited singlet oxygen and superoxide anion with quantum yields of 0.13 and < or = 0.2, respectively. Moreover, superoxide anion is also formed by the reaction of oxygen with the hydrated electron from photoionization. Hence the photosensitivity due to OFLX could be initiated by the oxygen radicals and/or by OFLX radicals acting as haptens.  相似文献   

12.
Coprecipitation with terbium hydroxide quantitatively recovered trace amounts of chromium(III), copper(II) and lead(II) at pH 8.4 - 10.8, 8.0 - 11.5 and 8.7 - 11.5, respectively. The precipitate was dissolved in 0.85 mol dm(-3) nitric acid, and the analytes were determined by graphite-furnace atomic absorption spectrometry (GF-AAS). The presence of terbium (up to 7 g dm(-3)) did not interfere with the determination. The detection limits were 0.3 microg dm(-3) for chromium, 0.4 microg dm(-3) for copper and 0.5 microg dm(-3) for lead, when the analytes in 200 cm3 of the sample solution were concentrated into 10 cm3. The ions added to river or seawater were quantitatively recovered. Chromium and copper in a contaminated river water were successfully determined.  相似文献   

13.
The adsorption of the lanthanides (except for Pm) on the zeolite Y was investigated under various solution conditions of nitrate ion concentration ([NO(-)(3)]: 0.001-2 mol/dm(3)) and total lanthanide concentration (from 0.0001 to 0.001 mol/dm(3)). The solutions of the lanthanide nitrates were equilibrated with the zeolite samples at 296 K. The concentrations of lanthanides in the initial and equilibrium solutions were determined by means of spectrophotometrical method with Arsenazo III reagent and distribution constants K(d) of the lanthanides between aqueous and zeolite phases were calculated. The evident concave tetrad effect in the change of logK(d) values (nitrate concentrations 0.4-2 mol/dm(3)) within the lanthanide series was noticed and an attempt at its explanation through the comparison of covalence in LnO bonds existing in triple bond AlO(1/3Ln)Si triple bond species in the zeolite phase and in Ln(NO(3))(2+) complexes forming in the aqueous phase was presented. The weak convex tetrad effect for equilibrium nitrate concentrations 0.001-0.32 mol/dm(3), manifesting in the change of logK(d) values and in the alteration of logK (adsorption constants), is evidence of the complexation of the tripositive lanthanide ions by the oxygens originating both from water molecules and from the zeolite framework.  相似文献   

14.
As foaming appears as a problem in chemical and fermentation processes that inhibits reactor performance, the eminence of a novel fluorocarbon-hydrocarbon unsymmetrical bolaform (FHUB: OH(CH2)11N+(C2H4)2(CH2)2(CF2)5CF3 I-) surfactant as an antifoaming agent as well as a foam-reducing agent was investigated and compared with other surfactants and a commercial antifoaming agent. The surface elasticity of FHUB was determined as 4 mN/m, indicating its high potential on thinning of the foam film. The interactions between FHUB and the microoganism were investigated in a model fermentation process related with an enzyme production by recombinant Escherichia coli, in V = 3.0 dm3 bioreactor systems with V(R) = 1.65 dm3 working volume at air inlet rate of Q(o)/V(R) = 0.5 dm3 dm(-3) min(-1) and agitation rate of N = 500 min(-1) oxygen transfer conditions, at T = 37 degrees C, pH(o) = 7.2, and C(FHUB) = 0 and 0.1 mM, in a glucose-based defined medium. As FHUB did not influence the metabolism, specific enzyme activity values obtained with and without FHUB were close to each other; however, because of the slight decrease in oxygen transfer coefficient, slightly lower volumetric enzyme activity and cell concentrations were obtained. However, when FHUB is compared with widely used silicon oil based Antifoam A, with the use of the FHUB, higher physical oxygen transfer coefficient (K(L)a) values are obtained. Moreover, as the amount required for the foam control is very low, minute changes in the working volume of the bioreactor were obtained indicating the high potential of the use of FHUB as an antifoaming agent as well as a foam-reducing agent.  相似文献   

15.
A sensitive and selective chemiluminescence assay for the determination of quinones was developed. The method was based on generation of reactive oxygen species through the redox reaction between quinone and dithiothreitol as reductant, and then the generated reactive oxygen was detected by luminol chemiluminescence. The chemiluminescence was intense, long-lived, and proportional to quinone concentration. It is concluded that superoxide anion was involved in the proposed chemiluminescence reaction because the chemiluminescence intensity was decreased only in the presence of superoxide dismutase. Among the tested quinones, the chemiluminescence was observed from 9,10-phenanthrenequinone, 1,2-naphthoquinone, and 1,4-naphthoquinone, whereas it was not observed from 9,10-anthraquinone and 1,4-benzoquinone. The chemiluminescence property was greatly different according to the structure of quinones. The chemiluminescence was also observed for biologically important quinones such as ubiquinone. Therefore, a simple and rapid assay for ubiquinone in pharmaceutical preparation was developed based on the proposed chemiluminescence reaction. The detection limit (blank + 3SD) of ubiquinone was 0.05 μM (9 ng/assay) with an analysis time of 30 s per sample. The developed assay allowed the direct determination of ubiquinone in pharmaceutical preparation without any purification procedure. Figure Chemiluminescence generated through the redox cycle of quinone  相似文献   

16.
制备了一种具有过氧化物酶活性的类普鲁士蓝/氧化石墨烯复合纳米材料(CoFe(Ⅲ)PBA/GO)。将具有过氧化物酶活性的CoFe(Ⅲ)PBA/GO和化学发光法相结合,构建了一种用于检测H2O2和抗坏血酸(AA)的化学发光分析法。CoFe(Ⅲ)PBA/GO催化H2O2产生的O2·-,·OH,1O2自由基氧化Luminol会产生很强的化学发光信号,通过检测化学发光强度可以实现对H2O2的检测。该方法检测H2O2的线性范围为0~0.8μmol/L,检测限为11 nmol/L。利用AA作为活性氧消除剂可以抑制化学发光反应的特点,实现了AA的检测。该方法测定AA的线性范围为0.02~0.8μmol/L,检测限为20 nmol/L。方法已应用于H2O2消毒水中H2O2和维生素C片中抗坏血酸的检测。  相似文献   

17.
Galian RE  Veglia AV  de Rossi RH 《The Analyst》2000,125(8):1465-1470
The effects of native cyclodextrins (alpha, beta or gamma), hydroxypropyl-beta-cyclodextrin, beta-cyclodextrin solubilized in urea, soluble starch and glucose in water solution on the fluorescence behaviour of melatonin (N-acetyl-5-methoxytryptamine) (M) and 5-methoxytryptamine [5-methoxy-3-(2-aminoethyl)indole] (5M) were determined. In addition, the effect of methanol and propanol with and without beta-cyclodextrin or hydroxypropyl-beta-cyclodextrin was assessed. From the fluorescence changes with pH, the values of the pKa for the ground (9.9 +/- 0.2) and the excited state (7.7 +/- 0.2) for 5M were determined. From the fluorescence changes with beta-cyclodextrin or hydroxypropyl-beta-cyclodextrin, the association constants of M, 5MH [5-methoxy-3-(2-ammoniumethyl)indole] and 5M with the two hosts were determined. The values with beta-cyclodextrin were KAssoc5MH = (1.4 +/- 0.4) x 10(2) mol-1 dm3, KAssoc5M = (1.6 +/- 0.1) x 10(2) mol-1 dm3 and KAssocM = (1.1 +/- 0.2) x 10(2) mol-1 dm3, and with hydroxypropyl-beta-cyclodextrin KAssoc5MH = (1.1 +/- 0.3) x 10(2) mol-1 dm3, KAssoc5M = (2.5 +/- 0.1) x 10(2) mol-1 dm3 and KAssocM = (1.51 +/- 0.07) x 10(2) mol-1 dm3. The ratios of the fluorescence quantum yields for the bound and free substrate (phi b/phi f) were in the range 1.15-1.48. The detection limits under the optimum conditions were 0.381 +/- 0.001 ng cm-3 for the complex 5MH-hydroxypropyl-beta-cyclodextrin in water and 0.290 +/- 0.001 ng cm-3 for the complex M-hydroxypropyl-beta-cyclodextrin in water with 5% of methanol. The recovery of melatonin from pharmaceutical preparations was 98-103% with an RSD of 2%. The recovery from rat pineals was also good. The method is direct, simple and accurate.  相似文献   

18.
A novel on-line oxidation method of ultra-trace Cr(III) dissolved in natural water has been developed using a flow electrolysis cell. This method was successfully applied to the determination of the total Cr concentration by flow injection-solid phase spectrophotometry using diphenylcarbazide as a coloring agent. With the applied potential of 1.35 V (vs. Ag/AgCl) and the flow rate of 0.80 cm(3) min(-1), Cr(III) was quantitatively oxidized to Cr(VI) at room temperature. The total Cr concentration of sub-microg dm(-3) in 3 - 4 samples could be determined within 1 h using an aqueous sample volume of 7.1 cm(3). The analytical values of the total Cr concentration in natural water were in good agreement with those obtained by ICP-MS. The detection limit of the proposed method was 0.014 microg dm(-3) (3sigma, n = 7). This method could be applied to the specific determination of Cr(III) and Cr(VI) in river water samples.  相似文献   

19.
Abstract The photophysical properties of the fluoroquinolone antibiotic moxifloxacin (MOX) were investigated in aqueous media. MOX in water, at pH 7.4, shows two intense absorption bands at 287 and 338 nm (epsilon = 44 000 and 17 000 dm(3) mol(-1) cm(-1), respectively). The absorption and emission properties of MOX are pH-dependent, pK(a) values for the protonation equilibria of both the ground (6.1 and 9.6) and excited singlet states (6.8 and 9.1) of MOX were determined spectroscopically. MOX fluoresces weakly, the quantum yield for fluorescence emission being maximum (0.07) at pH 8. Phosphorescence from the excited triplet state in frozen ethanol solution has a quantum yield of 0.046. Laser flash photolysis and pulse radiolysis studies have been carried out to characterize the transient species of MOX in aqueous solution. On laser excitation, MOX undergoes monophotonic photoionization with a quantum yield of 0.14. This leads to the formation of a long-lived cation radical whose absorption is maximum at 470 nm (epsilon(470) = 3400 dm(3) mol(-1) cm(-1)). The photoionization process releases hydrated electron which rapidly reacts (k = 2.8 x 10(10) dm(3) mol(-1) s(-1)) with ground state MOX, yielding a long-lived anion radical with maximum absorption at 390 nm (epsilon(390) = 2400 dm(3) mol(-1) cm(-1)). The cation radical of MOX is able to oxidize protein components tryptophan and tyrosine. The bimolecular rate constants for these reactions are 2.3 x 10(8) dm(3) mol(-1) s(-1) and 1.3 x 10(8) dm(3) mol(-1) s(-1), respectively. Singlet oxygen sensitized by the MOX triplet state was also detected only in oxygen-saturated D(2)O solutions, with a quantum yield of 0.075.  相似文献   

20.
Chung NH  Tabata M 《Talanta》2002,58(5):927-933
The mixture of 2-propanol with water has been employed to extract Au(III) along with other precious metals such as Pd(II) and Pt(IV) by using NaCl in the concentration range of 2.5-4.0 mol dm(-3). Upon the addition of NaCl within this concentration range (2.5-4.0 mol dm(-3)) phase separation was attained. Gold(III) in aqueous phase was quantitatively extracted into the 2-propanol phase at 2.5-4.0 mol dm(-3) of NaCl. The extraction of the other metals such as Pd(II) and Pt(IV) was much lower than for that of Au(III). Thus a maximal selective separation of Au(III) from these metals could be attained using the mixture of 2-propanol with water. A reaction mechanism involving the ion-pair of Na(+) and [AuCl(4)](-) has been proposed to explain this extraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号