首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of alkali metal magnesium on polymer degradation of physico-mechanical properties of radiation-vulcanized natural rubber latex (RVNRL) films was investigated. RVNRL films were prepared by the addition of Mg of different concentrations (0–30 ppm) to natural rubber latex and irradiation with various radiation doses (0–20 kGy). The radiation doses were optimized (12 kGy), and the adverse effect of Mg was studied against a reference film prepared without metal. Tensile strength, tear strength, and cross-linking density of the irradiated rubber films were decreased with increasing metal ion concentrations and decreasing radiation doses. The mechanical properties of the films were reduced by nearly 10% for 30 ppm Mg ions and at the optimum dose. In contrast, elongation at break, permanent set, and swelling ratio of the films were increased at the same conditions. The maximum tensile and tear strengths of irradiated rubber films without additive were 29.33 MPa and 47.95 N/mm, respectively, at a radiation dose of 12 kGy, and these values were about six times higher than those of blank samples. With the addition of Mg, the corresponding values decrease continuously, and the minimum values were found to be 26.35 MPa and 42.675 N/mm, respectively. The effect of divalent alkali metal on polymer chain scission can be explained by the classical electron concept reported in this article.  相似文献   

2.
The role of divalent metals in the degradation of the physico-mechanical properties of radiation-vulcanized natural rubber latex (RVNRL) films was investigated. RVNRL films were prepared by the addition of metals (Cu, Mg, etc.) of different concentrations (0–30ppm) to natural rubber latex and irradiated with various radiation doses (0–20kGy). The radiation doses were optimized (12kGy), and the adverse effect of metal ions was studied against a reference film prepared with no metal ions. Tensile strength, tear strength, and cross-linking density of the irradiated rubber films decreased with increasing metal ion concentrations and decreasing radiation doses. The mechanical properties of the films were reduced by 10–15% for 30ppm metal ions and at the optimum dose. In contrast, elongation at break, permanent set, and swelling ratio of the films increased at the same conditions. The relative effect of metal ions can be explained by the classical electron concept, reported in this article.  相似文献   

3.
The grafting of methyl methacrylate (MMA) onto polybutadiene rubber latex by the direct radiation method was carried out. The effects of monomer concentration, absorbed dose and dose rate of gamma rays on the grafting yield were investigated. The graft copolymers were characterized by transmission electron microscopy (TEM), FTIR spectroscopy, and differential scanning calorimetry. TEM photographs revealed that the core–shell structures of latex particles are formed at low MMA content, and with the increasing of MMA content, the semi-IPN-like structure with core–shell could be developed due to the high gel fraction of polybutadiene (PBD) seed particles. In addition, infrared analysis confirmed that MMA could be grafted onto PBD molecular chains effectively under appropriate irradiation conditions. The interfacial adhesion between PBD rubber (core) and PMMA (shell) phases could be enhanced with the increase of MMA concentration.  相似文献   

4.
The effect of transition metals as a promoter of physico-mechanical properties of radiation-vulcanized natural rubber latex (RVNRL) films was investigated. RVNRL films were prepared by the addition of transition metals (Fe, Mn, etc.) of different concentrations (0–30 ppm) in natural rubber (NR) latex and irradiated with various radiation doses (0–20 kGy). The concentrations of metal ions and radiation doses were optimized and found to be 20 ppm and 12 kGy, respectively. Tensile strength, tear strength, and cross-linking density of the irradiated rubber films were increased with increasing concentration of metal ions as well as radiation doses. The mechanical properties of the films were enhanced by approximately 20% at the optimum conditions. In contrast, elongation at break, permanent set, and swelling ratio of the films were decreased under the same conditions. The comparative effect of metal ions can be explained by Fajan's rules, reported in this article.  相似文献   

5.
甲基丙烯酸全氟烷基代乙酯对天然橡胶乳液辐射改性研究   总被引:1,自引:0,他引:1  
天然橡胶的性能与其组成中的C C双键有密切关系,由于C C双键的存在,为天然橡胶的改性提供了便利,大多数天然橡胶的改性方法,如氯化、氢氯化、环化、环氧化、接枝共聚等皆是建立在这一思路基础上的.White等[1]认为接枝天然橡胶的目的是提高天然橡胶的机械强度,赋予特殊的功能.作  相似文献   

6.
利用高压水射流技术制备天然橡胶复合材料   总被引:1,自引:0,他引:1  
首先利用超声空化作用将炭黑团聚体破碎、切割、分散在水中制得炭黑悬浮液,然后在高速射流场中,炭黑悬浮液被高速射流卷吸到天然胶乳中,在射流边界,由于二者存在极大的速度差,而形成一个湍流混合层,炭黑在湍流拉伸、剪切作用下微观分散到天然胶乳中.结果表明,与传统干法工艺相比,射流工艺可以使炭黑更均匀的分散到天然橡胶基体中.Payne效应结果表明射流工艺减弱了炭黑与炭黑之间的相互作用,增强了炭黑与橡胶之间的相互作用.同时射流工艺制备的复合材料硫化时间变短,硫化程度增加,硫化胶的撕裂强度提高了78%,回弹性提高了20%,DIN磨耗减小了33%.动态力学性能结果表明,射流工艺制备的复合材料在60℃左右具有更低的损耗因子.  相似文献   

7.
在Haake转矩流变仪的热机械作用下,用对苯乙烯磺酸钠(NASS)对炭黑进行预处理,制备了在水介质中具有优异的分散稳定性的亲水性纳米炭黑粒子(PNASS-CB),并将其直接用于天然橡胶胶乳的补强研究.1HNMR和FT-IR结果表明NASS在炭黑表面成功聚合包覆,用热重分析方法计算其包覆率为8.1 wt%,接枝率为2.5 wt%.亲水性炭黑的表面自由能降低,同时,Payne效应和结合胶含量表明亲水性炭黑粒子与橡胶的相互作用强于亲水性炭黑粒子之间的相互作用.因此,亲水性炭黑/天然橡胶胶乳复合材料的硫化时间变短,转化速度加快,硫化胶的撕裂强度提高了85%,拉伸强度提高了30%,断裂伸长率提高了20%.  相似文献   

8.
ABSTRACT

In the last decade, there has been a tremendous increase in the reports on adverse allergic reactions from natural rubber latex products used in the health care field. One of the reasons for the widely reported latex allergy is attributed to the increased use of natural rubber latex products, mainly gloves, since the emergence of deadly diseases such as Acquired Immunodeficiency Syndrome (AIDS), hepatitis, etc. This review presents the latest reported clinical manifestations from contact with natural rubber latex products, at the same time exploring the reasons behind these allergies, which are mainly attributed to the protein and rubber additives present in these latex products. The wish for better safety and health has led to the rise of synthetic rubber as an alternative to natural rubber products, the only advantage being the absence of proteins in them, while the toxicity from the chemicals remains the same. The synthetic elastomers, along with other alternatives like radiation and peroxide prevulcanized latices, hydrophilic coatings, glove liners, etc., are also dealt with in detail. The review also discusses the diagnostic methods available for latex allergy, methods of protein determination, organizations dealing with latex allergy, FDA ruling on gloves, etc.  相似文献   

9.
Nitrile butadiene rubber (NBR) was mixed with high density polyethylene (HDPE) thermoplastics with different ratio namely (100/20), (100/40), (100/60) and (100/80). The obtained blends were subjected to gamma irradiation with varying dose from 50 to 250 kGy. The induced crosslinking and hence the improvement in the different properties were followed up as a function of irradiation dose. Mechanical properties as tensile strength, tensile modulus at 50 % elongation, elongation at break percent, permanent set and hardness were carried out as a function of irradiation dose and blend ratio. Moreover, physical properties namely, gel fraction % and swelling number were found to improve with the increase of irradiation dose up to 250 kGy and with the increase of the content of HDPE in blend. Moreover, presence of NBR enhances the shrinking properties of the obtained blend which can be used as a good heat shrinkable material.  相似文献   

10.
Manganese was added as a promoter to investigate physico-mechanical properties of radiation-vulcanized natural rubber latex (RVNRL) films. RVNRL films were prepared by the addition of Mn with the concentration range 0–30 ppm to natural rubber latex and irradiated with various radiation doses (0–20 kGy). Tensile strength, tear strength, and cross-linking density of the irradiated rubber films increased with increasing the concentration of Mn ions as well as radiation doses. In contrast, elongation at break, permanent set, and swelling ratio of the films were decreased under the same conditions. The concentration of Mn ions and radiation doses were optimized and found to be 20 ppm and 12 kGy, respectively. The maximum tensile and tear strengths of irradiated rubber films were observed as 29.12 MPa and 44.78 N/mm, respectively at the optimum conditions. The mechanical properties of the films increased markedly with the addition of Mn until they attained the highest values of 33.88 MPa and 54.77 N/mm, respectively. These enhancements, which reached approximately 20% at the most favorable conditions, can be explained by the effect of transition metals in view of Fajan’s rules regarding the covalent character of ionic bonds and suggest that the higher the difference in charges between cation and anion, the higher the ability to form distortion or polarization of ions.  相似文献   

11.
The effects of methyl methacrylate (MMA) grafting and in situ formation of silica particles on the morphology and mechanical properties of natural rubber latex (NRL) were investigated. MMA grafting on NRL was carried out using cumyl hydroxy peroxide/tetraethylene pentamine (CHPO/TEPA) as a redox initiator couple. The grafting efficiency of the grafted NR was determined by solvent extractions and the grafted NRL was then mixed with tetraethoxysilane (TEOS), a precursor of silica, coated by adherence to a glass surface to form a film and cured at 80°C. The resultant products were characterized by FT‐IR and transmission electron microscopy. The influence of varying the MMA monomer weight ratio on the surface morphology of the composites was investigated by scanning electron and atomic force microscopy. The PMMA (poly MMA) grafted NRL particles were obtained as a core/shell structure from which the NR particles were the core seed and PMMA was a shell layer. The silane was converted into silica particles by a sol–gel process which was induced during film drying at 80°C. The silica particles were fairly evenly distributed in the ungrafted NR matrix but were agglomerated in the grafted NR matrix. The root‐mean‐square roughness increased with an increasing weight ratio of MMA in the rubber. The in situ silica particles in the grafted NR matrix slightly increased both the modulus and the tear strength of the composite film. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
 A comparative study of various acrylic monomers for grafting onto natural rubber was done. The stability of natural rubber latex (NRL) against coagulum with monomer, mechanical properties of grafted rubbers and percent of grafting were investigated. The NRL with monomers, methylacrylate (MA), ethylacrylate (EA) and n-butylacrylate (n-BA), is unstable but it is stable with methyl methacrylate (MMA), n-butyl methacrylate (BMA) and cyclohexyl methacrylate (CHMA). The mechanical properties and degree of grafting attained a maximum at a total radiation dose of 4 kGy. The values of tensile properties of MMA and CHMA grafted rubbers are almost similar, and higher than those of BMA grafted rubbers. On the other hand, the degree of grafting for CHMA is higher than those of MMA and BMA grafted rubbers. The infrared (IR) spectra of monomer grafted natural rubber were also studied.  相似文献   

13.
The sensitizing effect of acrylates on radiation vulcanization of natural rubber latex was studied. The results indicate that Gc value of crosslinking (Gc) will be higher at the same radiation dose when a sensitizer exists, and Gc value decreases with the increase of radiation dose (D) conforming to the formula Gc=KD, where K and α are constants depending on sensitizers. The more sensitizers added, the greater the Gc value. However, the viscosity of the natural rubber latex also increases rapidly along with the increase of sensitizers added.Some sensitizers, such as TMPTA, can decrease the optimum dose from about 200 kGy to approximately 20 kGy according to our experiment. The tensile strength of the film can reach round 20 MPa. Other physical properties are comparable to those of unsensitized.  相似文献   

14.
采用胶乳接枝插层法,引入单体,制备了天然橡胶蒙脱土聚丙烯酸丁酯纳米复合材料.X射线衍射(XRD)和透射电镜(TEM)结果表明,在单体丙烯酸丁酯(BA)的作用下,改性蒙脱土片层被进一步撑大,并在橡胶基体中以纳米级分散;动态粘弹谱(DMA)测定结果显示,该体系的玻璃化温度有所提高,且60℃时具有较低的tanδ值,说明具有较小的滚动阻力;物理机械性能测试表明该方法有效地实现了对天然橡胶的补强.  相似文献   

15.
Methyl methacrylate (MMA) can be grafted onto natural rubber (NR) in latex by gamma irradiation for improving the mechanical properties of the dry films. Physical blending of MMA-grafted NR latex with radiation vulcanized natural rubber latex (RVNRL) or simultaneous radiation grafting and crosslinking are found to be useful techniques for improving the properties of latex films. Moduli of the films are improved with increasing MMA content; however, tensile strength is reduced. High modulus without much reduction in tensile strength can be achieved if the MMA content is 50–60 parts per hundred rubber.  相似文献   

16.
A non-uniform mesh structure, i.e. a dense network near the surface of peroxide-prevulcanised natural rubber latex particles, was observed under transmission electron microscopy. In the initial period of prevulcanisation, the swelling ratio of the latex sheet decreased with longer reaction time while an increase in crosslink density of rubber particles containing polystyrene, prepared using the phase transfer/bulk polymerisation process, was noticed. The modulus of the rubber sheet increased up to maximum crosslinking and thereafter decreased. After removal of proteins from the latex membrane layer, derived from protein-lipid originally existing at the rubber particle surface, could not be detected. The absence of proteins, which act as free radical scavengers, resulted in a rapid diffusion of alkoxy radicals into the rubber phase of deproteinised latex and, therefore, a uniform crosslink distribution inside each particle was obtained.  相似文献   

17.
The radiation graft copolymerization of a mixture of styrene (St) and n-butyl acrylate (NBA) monomers on natural rubber (NR) latex has been studied. An irradiation dose of about 18 kGy was needed to attain a conversion of about 80%. The tensile strength of the grafted NR film increases with increasing irradiation dose. A film tensile strength of about 155 kg/cm2 was attained by irradiation of a mixture of St, NBA, and NR latex with a dose of about 14 kGy. At low concentrations of monomer in the latex, the Mooney viscosity of the film increases with increasing irradiation dose. At higher monomer concentration, grafting and homopolymerization proceed more favorably than crosslinking, and thus the Mooney viscosity decreases with increasing dose. Thermal analysis of the film showed that the grafted NR was more heat resistant than ungrafted NR.  相似文献   

18.
剥离型硅橡胶/黏土纳米复合材料研究   总被引:10,自引:0,他引:10  
利用层状硅酸盐制备有机 无机纳米复合材料是当前人们研究的热点[1,2 ] ,这类材料具有较常规聚合物 无机填料复合材料无法比拟的优点 ,可以明显改善高分子材料的物理机械性能、热稳定性、气体阻隔性、阻燃性、导电性、光学性等 .一般来说 ,聚合物 层状硅酸盐 (Polymerlayeredsilicate ,PLS)纳米复合材料可分为插层型和剥离型两种类型 .插层型纳米复合材料即聚合物插入到硅酸盐层中 ,硅酸盐在近程仍保持原有的有序晶体结构 ,在远程则是无序的 .对弹性体而言 ,硅酸盐含量在插层型杂化材料中的含量比较高 ,力学性能…  相似文献   

19.
A fully characterised natural rubber latex was subjected to mechanicaldegradation by stirring at intervals. The resistance to oxidative degradation of the differentsamples were studied by measuring the Plasticity retention indices (PRI). The results show that there is an enhancement of the PRI from 57% for the undegradedrubber to 79% for the one-hour degraded sample. Further degradation resulted in decreaseof PRI as time of degradation increased. Therefore, the one-hour degraded sample is aspecial rubber with high oxidation resistance which is of great importance in engineering.  相似文献   

20.
甲基丙烯酸镁增强氢化丁腈橡胶的结构与形态和性能   总被引:5,自引:0,他引:5  
用不同份量的甲基丙烯酸镁(MgMA)作增强剂,过氧化二异丙苯(DCP)作硫化剂,通过混炼和硫化过程的原位聚合制备了氢化丁腈橡胶/聚甲基丙烯酸镁(HNBR/PMgMA)纳米复合材料,用XRD、FTIR1、3C-NMR、SEM、TEM、DMA和交联密度分析等方法研究了其结构、形态和性能,并阐述了MgMA改性HNBR的相关机理.结果表明,MgMA在混炼过程中粒径明显变小,部分达到纳米级.硫化过程中发生原位自由基聚合,并部分接枝到HNBR分子链上,HNBR硫化胶和PMgMA有可能形成接枝互穿聚合物网络(接枝IPN).随着MgMA用量的增加,纳米复合材料硫化胶的定伸应力、拉伸强度、扯断伸长率、撕裂强度和热氧老化性能逐渐提高.当MgMA含量为30份时,体系的拉伸强度和扯断伸长率分别为38.5MPa和545%,并具有优异的热空气老化性能.MgMA能明显增加HNBR复合材料的储能模量,并降低其损耗因子.随着MgMA用量的增加,纳米复合材料硫化胶的总交联密度(Ve)和离子键交联密度(Ve2)增加,而共价键交联密度(Ve1)下降,表明离子键对HNBR/PMgMA纳米复合材料的力学性能起重要作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号