首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The flow of a micropolar fluid in a porous channel with expanding or contracting walls is investigated. The governing equations are reduced to ordinary ones by using similar transformations. Homotopy analysis method (HAM) is employed to obtain the expressions for the velocity fields and microrotation fields. Graphs are sketched for the effects of some values of parameters, especially the expansion ratio, on the velocity and microrotation fields and associated dynamic characteristics are analyzed in detail.  相似文献   

2.
A nonlinear stability method is developed for laminar two-fluid shear flows which undergo changes in the interface topology. The method is based on the nonlinear parabolized stability equations (PSE) and incorporates a scalar-based interface capturing (IC) scheme in order to track complex deformations of the fluid interface. In doing so, the formulation retains the flexibility and physical insight of instability-wave based methods, while providing hydrodynamic modeling capabilities similar to direct numerical calculations: the new formulation, referred to as the IC-PSE, can capture the nonlinear physical mechanisms responsible for generating large-scale, two-fluid structures, without incurring heavy computational costs. This approach is valid for spatially developing, laminar two-fluid shear flows which are convectively unstable, and can naturally account for the growth of finite amplitude interfacial waves, along with changes to the interfacial topology. We demonstrate the accuracy of the IC-PSE against direct Navier–Stokes calculations for two-fluid mixing layers with density and viscosity stratification. The comparisons show that the IC-PSE can predict the dynamics of the instability waves and capture the formation of Kelvin–Helmholtz vortex rolls and large scale liquid structures, at an order of magnitude less computational cost than direct calculations. The role of surface tension in the IC-PSE formulation is shown to be valid for flows in which Re/We ? 1, and the method accurately predicts the formation and non-linear evolution of flow structures in this limit. This is demonstrated for spatially developing mixing layers which lead to vortex roll-up and ligaments, prior to droplet formation. The pinch-off process itself is a high surface tension phenomenon and in not considered herein. The method also accurately captures the effect of interfacial waves on the mean flow, and the topology changes during the non-linear evolution of the two-fluid structures.  相似文献   

3.
A theoretical formulation and corresponding numerical solutions are presented for microscopic fluid flows in porous media with the domain sufficiently large to reproduce integral Darcy scale effects. Pore space geometry and topology influence flow through media, but the difficulty of observing the configurations of real pore spaces limits understanding of their effects. A rigorous direct numerical simulation (DNS) of percolating flows is a formidable task due to intricacies of internal boundaries of the pore space. Representing the grain size distribution by means of repelling body forces in the equations governing fluid motion greatly simplifies computational efforts. An accurate representation of pore-scale geometry requires that within the solid the repelling forces attenuate flow to stagnation in a short time compared to the characteristic time scale of the pore-scale flow. In the computational model this is achieved by adopting an implicit immersed-boundary method with the attenuation time scale smaller than the time step of an explicit fluid model. A series of numerical simulations of the flow through randomly generated media of different porosities show that computational experiments can be equivalent to physical experiments with the added advantage of nearly complete observability. Besides obtaining macroscopic measures of permeability and tortuosity, numerical experiments can shed light on the effect of the pore space structure on bulk properties of Darcy scale flows.  相似文献   

4.
We presented the thermodynamic structure of a new continuum flow model for multicomponent gas mixtures. The continuum model is based on a volume diffusion concept involving specific species. It is independent of the observer?s reference frame and enables a straightforward tracking of a selected species within a mixture composed of a large number of constituents. A method to derive the second law and constitutive equations accompanying the model is presented. Using the configuration of a rotating fluid we illustrated an example of non-classical flow physics predicted by new contributions in the entropy and constitutive equations.  相似文献   

5.
We consider behavior of finite magnetic field lines during reconnection processes. We portray field line motions using Euler potentials representation. Here, we propose a new insight into plasma flow fields related with magnetic reconnection. In this approach reconnection is treated as a breakage of magnetic topology, which results in deviation from the line preserving flow regime. We derive constraints and the general equations for these flows. In our approach the flux preserving flows are treated as a special case of line preserving regime. We also derive a constraint on a non-ideal term in Ohm’s Law within diffusion regions, which relates plasma flow with resistivity, and which must hold for non-reconnective diffusion. We also propose a new method of detecting magnetic reconnection.  相似文献   

6.
In this paper we make some remarks on an interesting mathematical method which is, in our opinion, wrongfully undervalued. We mention its many applications analyzing in particular Maxwell equations. Indeed, starting from the definition of an ordinary frame of reference in General Relativity, we consider the Cattaneo’s projection technique to write the intrinsic formulation of evolution equations of the electromagnetic matter.  相似文献   

7.
The Brinkman equations of fluid motion are a model of flows in a porous medium. We develop the exact solution of the Brinkman equations for three-dimensional incompressible flow driven by regularized forces. Two different approaches to the regularization are discussed and compared on test problems. The regularized Brinkman model is also applied to the unsteady Stokes equation for oscillatory flows since the latter leads to the Brinkman equations with complex permeability parameter. We provide validation studies of the method based on the flow and drag of a solid sphere translating in a Brinkman medium and the flow inside a cylindrical channel of circular cross-section. We present a numerical example of a swimming organism in a Brinkman flow which shows that the maximum swimming speed is obtained with a small but non-zero value of the porosity. We also demonstrate that unsteady Stokes flows with oscillatory forcing fall within the same framework and are computed with the same method by applying it to the motion of the oscillating feeding appendage of a copepod.  相似文献   

8.
We discuss symmetry flows of noncommutative Kadomtsev-Petviashvili (NCKP) hierarchy. An operatorbased formulation, alternative to the star-product approach of extended symmetry flows is presented. Noncommutative additional symmetry flows of the NCKP hierarchy are formulated. A rescaling symmetry flow which is associated with the rescaling of whole coordinates is introduced.  相似文献   

9.
In this paper we consider gradient structures in the dynamics and geometry of the asymmetri nonperiodic tridiagonal and full Toda flow equations. We compare and contrast a number of formulations of the nonperiodic Toda equations. In the case of the full Kostant (asymmetric) Toda flow we explain the role of noncommutative integrability in its qualitative behavior. We describe the relationship between the asymmetric Toda flows and the symmetric and indefinite Toda flows, and prove in particular that one may conjugate from the full Kostant Toda flows to the full symmetric Toda flows via a Poisson map.  相似文献   

10.
In the present work a new SPH model for simulating interface and free surface flows is presented. This formulation is an extension of the one discussed in Colagrossi and Landrini (2003) and is related to the one proposed by Hu and Adams (2006) to study multi-fluid flows. The new SPH scheme allows an accurate treatment of the discontinuity of quantities at the interface (such as the density), and permits to model flows where both interfaces and a free surface are present. The governing equations are derived following a Lagrangian variational principle leading to an Hamiltonian system of particles. The proposed formulation is validated on test cases for which reference solutions are available in the literature.  相似文献   

11.
On Symmetry Flows of Noncommutative Kadomtsev-Petviashvili Hierarchy   总被引:1,自引:0,他引:1  
We discuss symmetry flows of noncommutative Kadomtsev-Petviashvili (NCKP) hierarchy. An operatorbased formulation, alternative to the star-product approach of extended symmetry flows is presented. Noncommutative additional symmetry flows of the NCKP hierarchy are formulated. A rescaling symmetry flow which is associated with the rescaling of whole coordinates is introduced.  相似文献   

12.
We extend [Shravan K. Veerapaneni, Denis Gueyffier, Denis Zorin, George Biros, A boundary integral method for simulating the dynamics of inextensible vesicles suspended in a viscous fluid in 2D, Journal of Computational Physics 228(7) (2009) 2334–2353] to the case of three-dimensional axisymmetric vesicles of spherical or toroidal topology immersed in viscous flows. Although the main components of the algorithm are similar in spirit to the 2D case—spectral approximation in space, semi-implicit time-stepping scheme—the main differences are that the bending and viscous force require new analysis, the linearization for the semi-implicit schemes must be rederived, a fully implicit scheme must be used for the toroidal topology to eliminate a CFL-type restriction and a novel numerical scheme for the evaluation of the 3D Stokes single layer potential on an axisymmetric surface is necessary to speed up the calculations. By introducing these novel components, we obtain a time-scheme that experimentally is unconditionally stable, has low cost per time step, and is third-order accurate in time. We present numerical results to analyze the cost and convergence rates of the scheme. To verify the solver, we compare it to a constrained variational approach to compute equilibrium shapes that does not involve interactions with a viscous fluid. To illustrate the applicability of method, we consider a few vesicle-flow interaction problems: the sedimentation of a vesicle, interactions of one and three vesicles with a background Poiseuille flow.  相似文献   

13.
We discuss the kinetic representation of gases and the derivation of macroscopic equations governing the thermomechanical behavior of a dilute gas viewed at the macroscopic level as a continuous medium. We introduce an approach to kinetic theory where spatial distributions of the molecules are incorporated through a mean-free-volume argument. The new kinetic equation derived contains an extra term involving the evolution of this volume, which we attribute to changes in the thermodynamic properties of the medium. Our kinetic equation leads to a macroscopic set of continuum equations in which the gradients of thermodynamic properties, in particular density gradients, impact on diffusive fluxes. New transport terms bearing both convective and diffusive natures arise and are interpreted as purely macroscopic expansion or compression. Our new model is useful for describing gas flows that display non-local-thermodynamic-equilibrium (rarefied gas flows), flows with relatively large variations of macroscopic properties, and/or highly compressible fluid flows.  相似文献   

14.
A fictitious-domain based formulation for fully resolved simulations of arbitrary shaped, freely moving rigid particles in unsteady flows is presented. The entire fluid–particle domain is assumed to be an incompressible, but variable density, fluid. The numerical method is based on a finite-volume approach on a co-located, Cartesian grid together with a fractional step method for variable density, low-Mach number flows. The flow inside the fluid region is constrained to be divergence-free for an incompressible fluid, whereas the flow inside the particle domain is constrained to undergo rigid body motion. In this approach, the rigid body motion constraint is imposed by avoiding the explicit calculation of distributed Lagrange multipliers and is based upon the formulation developed by Patankar [N. Patankar, A formulation for fast computations of rigid particulate flows, Center for Turbulence Research Annual Research Briefs 2001 (2001) 185–196]. The rigidity constraint is imposed and the rigid body motion (translation and rotational velocity fields) is obtained directly in the context of a two-stage fractional step scheme. The numerical approach is applied to both imposed particle motion and fluid–particle interaction problems involving freely moving particles. Grid and time-step convergence studies are performed to evaluate the accuracy of the approach. Finally, simulation of rigid particles in a decaying isotropic turbulent flow is performed to study the feasibility of simulations of particle-laden turbulent flows.  相似文献   

15.
The recirculation flow induced by the rising motion of a bubble stream in a viscous fluid within an open-top rectangular enclosure is studied. The three-dimensional volume averaged conservation equations are solved by a control-volume method using a hybrid finite differencing scheme to describe the liquid phase hydrodynamics. The momentum exhange between the bubbles and the liquid phase is modeled with a source term equals to the volumetric buoyancy force acting on the gas in the bubble stream. The volumetric buoyancy force accounts for in line interactions between bubbles through the average gas volume fraction in the gas liquid column which depends on the size and the rising velocity of bubbles. The fluid flow within an open-top rectangular enclosure is further investigated by particle image velocimetry for a bubble stream rising in a water-glycerol solution. The measured fluid velocities in a vertical plane are compared with the predictions of the numerical model over a wide range of fluid viscosity (43 mPa s-800 mPa s) and gas flow rates. Finally, the recirculation flows resulting from the interaction of two neighbouring vertical bubble streams are studied. Received: 23 July 1997 / Revised: 19 December 1997 / Accepted: 11 May 1998  相似文献   

16.
We consider numerical algorithms for the simulation of hydrodynamics of two-dimensional vesicles suspended in a viscous Stokesian fluid. The motion of vesicles is governed by the interplay between hydrodynamic and elastic forces. Continuum models of vesicles use a two-phase fluid system with interfacial forces that include tension (to maintain local “surface” inextensibility) and bending. Vesicle flows are challenging to simulate. On the one hand, explicit time-stepping schemes suffer from a severe stability constraint due to the stiffness related to high-order spatial derivatives in the bending term. On the other hand, implicit time-stepping schemes can be expensive because they require the solution of a set of nonlinear equations at each time step.  相似文献   

17.
A general representation of solutions is constructed for one-dimensional flows of viscous compressible fluid, which allows their exact solutions to be found. A general representation of solutions to Euler equations for three-dimensional compressible fluid flows is found. By analogy, a representation is constructed for flows in a uniformly rotating frame of reference.  相似文献   

18.
The need of developing advanced micro-electro-mechanical systems (MEMS) has motivated the study of fluid-thermal flows in devices with micro-scale geometries. In many MEMS applications the Knudsen number varies in the range from 10−2 to 102. This flow regime can be treated neither as a continuum nor as a free molecular flow. In order to describe these flows it is necessary to implement the Boltzmann equation (BE) or simplified kinetic model equations.The aim of the present work is to propose an efficient methodology for solving internal flows of binary gaseous mixtures in rectangular channels due to small pressure gradients over the whole range of the Knudsen number. The complicated collision integral term of the BE is substituted by the kinetic model proposed by McCormack for gaseous mixtures. The discrete velocity method is implemented to solve in an iterative manner the system of the kinetic equations. Even more the required computational effort is significantly reduced, by accelerating the convergence rate of the iteration scheme. This is achieved by formulating a set of moment equations, which are solved jointly with the transport equations.The velocity profiles and the flow rates of three different binary mixtures (He–Ar, Ne–Ar and He–Xe) in 2D micro-channels of various height to width ratios are calculated. The whole formulation becomes very efficient and can be implemented as an alternative methodology to the classical method of solving the Navier–Stokes equations with slip boundary conditions, which in any case is restricted by the hydrodynamic regime.  相似文献   

19.
In this paper, evolution of the high energy area of universe, through the scenario of 5 dimensional (5D) universe, has been studied. For this purpose, we solve Einstein equations for 5D metric and 5D perfect fluid to derive Friedmann-like equations. Then we obtain the evolution of scale factor and energy density with respect to both space-like and time-like extra dimensions. We obtain the novel equations for the space-like extra dimension and show that the matter with zero pressure cannot exist in the bulk. Also, for dark energy fluid and vacuum fluid, we have both accelerated expansion and contraction in the bulk.  相似文献   

20.
It is shown that the use of equations of hydrodynamics of an incompressible and compressible fluid gives similar results for a number of experimental data from the field of classical electrodynamics used in electrochemistry. The analogue of electric current in wires is a stream that creates around itself a flow of a fluid. The analogue of electric field is the acceleration of a flow, whereas the analogue of magnetic induction is the frequency of a rotational motion of the fluid. Ampere’s law in hydrodynamics describes the interaction of flows with real bodies in terms of the Zhukovsky equation. The power laws in the fluid are similar, with some distinctions, to Maxwell equations. The expansion of the equations of conservation of momentum and mass in a series in perturbations leads to wave equations also similar to the Maxwell equations for the propagation of electromagnetic waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号