首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have fabricated finite-sized Pb superconducting networks with 10 × 10 square (each 6 × 6 μm2) holes by using the electron beam lithography and vortex arrangements are visualized by using magneto-optical imaging. We find that the vortex penetration at low temperature is controlled by defects in the network. We also find nearly regular arrangements of vortices with defects close to 1/2 and1/3 of the matching field.  相似文献   

2.
We have investigated the distribution of external current injected from superconducting leads into mesoscopic samples using time dependent Ginzburg-Landau theory. In particular, we have taken account of the current and field variation in the thickness direction. We have performed numerical simulations for the sample composed of two rectangular solids connected by two bridges. We have observed “switching” like behavior in the current distribution at the bridges, which corresponds to the change between vortex penetration and expulsion. This switching like behavior, as well as the magnitude of the currents, depends on the sample thickness in the direction of the external field.  相似文献   

3.
We study the distinction between giant vortex states and multivortex states in a thin mesoscopic superconducting square by using the temperature dependence of the vortex expulsion fields. We find that the results agree well with those obtained from the multiple-small-tunnel-junction method, indicating that the distinction by the temperature dependence of the vortex expulsion fields is applicable to superconducting squares.  相似文献   

4.
We have studied quantum dots (QDs) fabricated by activated spinodal decomposition (ASD) of an InGa(Al)As alloy deposited on top of self-organized InAs nanoscale stressors on GaAs substrate. Such a growth sequence results in a strong red shift of the PL emission down to 1.3 μm at 300 K. This red shift is caused by the formation of In-rich areas in the vicinity of the InAs islands, which increase the effective dot size. Beyond a certain critical InAs composition or nominal thickness of the InGa(Al)As layer the PL line shifts back towards higher energies. Adding Al to the alloy increases the red shift for a given In concentration. Room temperature lasing near 1.3 μm with threshold current densities of about 85 A/cm2 was achieved for lasers based on three-fold stacked ASD-formed QDs, with a maximum cw output power of 2.7 W.  相似文献   

5.
6.
Superconductivity of nanosized Pb-island structures whose radius is 0.8 to 2.5 times their coherence length was studied under magnetic fields using low-temperature scanning tunneling microscopy and spectroscopy. Spatial profiles of superconductivity were obtained by conductance measurements at zero-bias voltage. Critical magnetic fields for vortex penetration and expulsion and for superconductivity breaking were measured for each island. The critical fields depending on the lateral size of the islands and existence of the minimum lateral size for vortex formation were observed.  相似文献   

7.
A simple and self-catalytic method has been developed for synthesizing finely patterned ZnO nanorods on ITO-glass substrates under a low temperature of 500 °C. The patterned ZnO nanorod arrays, a unit area is of 400 × 100 μm2, are synthesized via vapor phase transport method. The surface morphology and composition of the as-synthesized ZnO nanorods are characterized by means of scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The mechanism of formation of ZnO nanorods is also discussed. The measurement of field emission (FE) reveals that the as-synthesized ZnO nanorods arrays have a turn-on field of 3.3 V/μm at the current density of 0.1 μA/cm2 and a low threshold field of 6.2 V/μm at the current density of 1 mA/cm2. So this approach must have a potential application of fabricating micropatterned oxide thin films used in FE-based flat panel displays.  相似文献   

8.
Uniformly distributed PbTiO3 nanodots were successfully prepared by phase separation approach. A precursor sol film was first spin-coated on Si wafer and then spontaneously separated into two distinct phases owing to the Marangoni instability. PT nanodots with tailorable size and density were obtained after further heat treatment. X-ray diffraction analysis indicated that these nanodots showed a perovskite structure. An excellent room temperature field emission property of PbTiO3 nanodots was observed: the minimum turn-on voltage was about 5.3 V/μm; while the emission current density reached about 270 μA cm−2 at an applied field of about 9.25 V/μm.  相似文献   

9.
ZnO nanoinjectors were synthesized on Au-coated Si substrate by direct thermal evaporation of zinc powder at a low temperature of 600 °C and atmospheric pressure. Field-emission scanning electron microscopy and X-ray diffraction were applied to study the structural characteristics of the sample. The result indicated that the nanoinjector sample consisted of single-crystalline wurtzite structures which were preferentially oriented in the 0 0 1 direction. The field emission of the sample started at a turn-on field of 1.5 V/μm at a current density of 1 μA/cm2, while the emission current density reached about 1 mA/cm2 at an applied field of 5.0 V/μm.  相似文献   

10.
A theoretical method based on the quantum scattering theory is presented to evaluate the performances of a two-dimensional (2-D) focusing square multilayer Bragg–Fresnel lens. The numerical application results of the square multilayer Bragg–Fresnel lens working at 0.7 nm wavelength (W/Si 25 periods with a double layer thickness of 5.38 nm, the size of the diffraction pattern is about 291×291 μm, the size of the center square in the diffraction pattern is 21.4×21.4 μm, and the size of the smallest square in the diffraction pattern is 0.39×0.39 μm) are given. Our theoretical results are compared with the experimental results of the linear Bragg–Fresnel lens reported by other researchers; an analysis and a discussion are carried out regarding the advantages of an optical system based on the 2-D focusing square multilayer Bragg–Fresnel lens, in contrast to a Kirkpatrick–Baez optical system on the basis of a two-linear Bragg–Fresnel lens.  相似文献   

11.
The donor–acceptor functionalized molecule, bis(4-(2-(3,3-dicyanomethylene-5,5-dimethyl-1-cyclohexylidene)vinyl)phenyl)(1-naphthyl)amine (DPN-4CN), with symmetrical structure, was investigated for its application in optoelectronic devices. Red organic light-emitting diodes (OLEDs) were fabricated by doping DPN-4CN in tris(8-hydroxyquinolino) aluminum (Alq3) as red emitters, with a structure of ITO/NPB/Alq3:DPN-4CN/BCP/Alq3/LiF/Al. The device with a doping concentration of 2.5 wt% showed pure red emission with λmax at 654 nm and CIE coordinates of (0.62, 0.36), a high brightness of 5080 cd m−2 at a driving voltage of 12 V, a current efficiency of 2.14 cd A−1 and an external quantum efficiency of 1.07% at a current density of 20 mA cm−2. The current efficiencies and CIE coordinates of the device were almost constant over a current density from 1 to 200 mA cm−2.  相似文献   

12.
Absolute frequency stabilization of an extended-cavity diode laser at 0.94 μm is reported. The diode laser was frequency locked against rovibrational absorption lines of water vapour by using the frequency modulation spectroscopy technique. The stabilized oscillator shows a short-term frequency stability level of 40 kHz for integration times of 1 s and a long-term frequency drift lower than 10 MHz for observation times longer than 103 s. The frequency-stabilized oscillator system is mounted on a compact breadboard (75 cm×50 cm) and constitutes the seed laser system for the injection of a high-energy DIAL laser transmitter operating in the 0.94-μm spectral region.  相似文献   

13.
We have studied the microscopic properties of the tetragonal UCu5Al Kondo compound by 27Al and 63,65Cu NMR in the paramagnetic state. NMR and susceptibility measurements performed on the powdered sample, but oriented along the applied field, showed χ>χ. Plots of K(T) against χ(T) at temperatures T≥100 K yield the transferred hyperfine fields of +5.9 kOe/μB for 27Al nuclei, and +5.3 and −7.0 kOe/μB for 65Cu nuclei in crystallographically inequivalent Cu(2) and Cu(1) sites, respectively. The Knight shift vs. susceptibility plots for T<100 K exhibit a deviation from the linear behaviour (absolute values of shifts become smaller than expected). We attribute this finding to the crystalline electric field effect in similar way as it was reported for several Ce-based compounds. The random distribution of the Al and Cu(2) atoms in the crystal lattice we consider as a reason of an unusual broadening of the NMR spectra, particularly at low temperatures.  相似文献   

14.
A flow injection catechol biosensor based on tyrosinase entrapped in carbon nanotube modified polypyrrole biocomposite film on a glassy carbon surface has been developed. Amperometric response was measured as a function of concentration of catechol, at a fixed bias voltage of −50 mV at a flow rate of 1 mL/min. The proposed biosensor exhibited impressive analytical performance such as a linear range between 3 and 50 μM, a short response time (10 s), a detection limit of 0.671 μM and an excellent operational (with a relative standard deviation of 0.54%) and long-term stability (85% remained after 10th week). A comparison of the analytical parameters of the developed biosensor with polypyrrole/tyrosinase film electrode was performed in the study. CNT was shown to enhance the electron transfer between the electrode and enzyme and capable to carry higher bioactivity owing to its intensified surface area.  相似文献   

15.
We presented a microfabrication process for optical volume vortex grating inside glass by femtosecond laser pulses. The self-trapped filament of femtosecond laser pulses can induce hundreds μm-long region refractive-index changes in glass. We realized the restructured optical vortex beams using a collimated He–Ne laser beam. The maximum first-order diffraction efficiency was about 19.6%. The volume vortex grating structure fabricated in glass is polarization dependent.  相似文献   

16.
Spectroscopy of local cyclotron emission from the hot spots is carried out on a GaAs/AlGaAs heterostructure two-dimensional electron gas system at B=6 T (ν=2.5) by applying a terahertz scanning microscope. The spectra of CE at the current entry and exit corners (hot spots) are remarkably broadened towards lower frequencies with increasing I up to 300 μA, indicating substantial relevance of non-equilibrium electrons generated in higher-level LLs; in terms of effective electron temperature, TE reaching as high as 300 K is suggested while TE=25–30 K on an average in the surrounding region (within a distance of 50 μm) about the hot point.  相似文献   

17.
High-speed, oxide-confined, polyimide-planarized 850 nm vertical-cavity surface-emitting lasers (VCSELs) with oxide aperture diameters of 9, 10, 12, 15, 20, and 30 μm have been fabricated and characterized. For a 9 μm oxide aperture diameter, the lasers exhibit a resonance frequency, a 3-dB modulation frequency, and a modulation current efficiency factor (MCEF) up to 12.4, 16.5 GHz, and 10.9 GHz/mA1/2, respectively, at only 7.9 kA/cm2. Threshold voltage and current were 1.45 V and 0.7 mA, respectively. It is demonstrated that increasing the resonance frequency with bias does not guarantee a higher modulation bandwidth. The influence of oxide aperture scaling effect on VCSEL performance is presented.  相似文献   

18.
We report on compact eye-safe nanosecond laser sources emitting in the 1.5 μm wavelength range based on non-critically phase-matched parametric interaction in optical parametric oscillators (OPOs) with KTP and periodically poled KTP (PPKTP) crystals, pumped by the fundamental frequency of Nd:YAG lasers. As much as 250 μJ signal pulse energy at 1.5 μm wavelength, 6.5 ns FWHM pulse-width, has been obtained in a PPKTP-OPO, extracavity pumped by a Nd:YAG microlaser oscillator–amplifier at 650 μJ pump pulse energy, 8 ns pulse-width. A single signal pulse of 2.7-mJ output energy at 1.57 μm wavelength, less than 5 ns pulse-width, was generated in a KTP-OPO, intracavity pumped by a passively Q-switched Nd:YAG laser.  相似文献   

19.
Using masks for laser ablation has proven useful in the fabrication of prototypes for the manufacturing of micro-fluidic devices. In this work, an excimer laser was used to engrave microscopic channels on the surface of polyethylene terephthalate (PET), which showed a high absorption ratio for an excimer laser beam with a wavelength of 248 nm. When 50 μm wide rectangular microscopic channels were made using a 500×500 μm square mask and a magnification ratio of 1/10, ditch-shaped defects were found at both corners. The calculation of the laser beam intensity showed that a coherent image in the PET specimen caused the defects. An analysis based on the Fourier diffraction theory enabled the prediction of a coherent shape at the image plane, as well as a diffracted beam between the mask and the image plane. The analysis also showed that the diameter of the aperture was a predominant factor toward the elimination of ditch-shaped defects in the rectangular microscopic channels on the PET produced by an excimer laser ablation.  相似文献   

20.
This study examined the electrical and optical properties of red OLEDs (organic light-emitting diodes) with a four-layer structure, ITO/amorphous fluoropolymer (AF)/N,N′-diphenyl-N,N′-bis(3-methylphenyl)-1,1-biphenyl-4,4′-diamine (TPD)/R-H:R-D/lithium fluoride (LiF)/Al, containing a hole injection material, AF (amorphous fluoropolymer) and an electron injection layer material, LiF. Compared to the basic structure (two-layer structure), the brightness and luminous efficiency of the four-layer structure, ITO/TPD/R-H:R-D/Al, increased approximately 100 times (30,000 lm/m2) and 150 times (51 lm/W), respectively, with an applied voltage. The excellent efficiency of the external proton was also increased 150 times (0.51%). That is, the hole and electron injection layers improved the surface roughness of ITO and Al, and the interfacial physical properties. In addition, these layers allowed the smooth injection of holes and electrons. The luminance, luminous efficiency and external quantum efficiency were attributed to an increase in the recombination rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号