首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The kinetics of the reaction of [Cu(TPT)(H2O)3]2+ and [Ni(TPT)(H2O)3]2+ with H2O have been followed and it has been shown that the formation of covalent hydrates is important in the understanding of these systems. The [Co(TPT)(OH)3] compound and its Ni analogue are attacked by HO initially to form pseudo-base species and in, the case of Ni , the ligand then hydrolyses to yield a compound related to the carboximate formed when HO reacts with [Cu(TPT)(OH)3]. In this reaction too, the formation of a pseudo-base, involving attack of HO at the triazine ring in the ligand is significant.Part XXI, ref. 2.  相似文献   

2.
Summary The kinetics of reaction of HO with [Ru(TPT)2]2+ and [Fe(TPT)2]2+ have been studied in detail. The former participates in an equilibrium with HO yielding a pseudo-base by attack at the ligand and, at very high concentrations of HO, dissociates to yield pure TPT quantitatively. [Fe(TPT)2]2+ dissociates rapidly in basic solution, even at 273 K, however, [Fe(TPT)(TPT · OH)]+ does in fact exist and the Fell and Rull reactions are quite similar, although that of Fell is much faster. The implications of these findings for the dissociation of [Fe(TPT)2]2+ over a wide range of pH are discussed.Patt XX, ref. 1.  相似文献   

3.
Summary The reactions of [Fe(bipym)3]2+ and [Ru(bipym)3]2+ with hydroxide ion in aqueous solution have been followed. The [Ru(bipym)3]2+ species undergoes nucleophilic attack at the ligand to yield [Ru(bipym)2(pyrimidine)(OH)]+ and [HCO2] ion, involving cleavage of one pyrimidyl ring. Intermediates can be observed in the reaction of [Fe(bipym)3]2+ with HO, N3 and SCN. The kinetics of the first reaction have been followed and the results are compared with those known for the reactions of [Fe(bipy)3]2+, [Fe(phen)3]2+ and similar compounds.Part XXIII: P. A. Williams,Transition Met. Chem., 78/84.  相似文献   

4.
Summary [Ru(TPT)2]2+ undergoes nucleophilic attack at the ligand in aqueous solutions of HO. The reaction is reversible and the equilibrium can be followed spectrophotometrically. In acid solution, the free nitrogen atoms of the uncoordinated pyridine residues are protonated to form a new species. Two reactions of [Fe(TPT)2]2+ take place in H2O over extended periods. The first is the well-known dissociative process, but the second appears to involve reaction at the ligand. The results are used to reinterpret some of the chemistry of complexes of TPT and related ligands.Part XIX: J. A. Arce Sagüés, R. D. Gillard, R. J. Lancashire and P. A. Williams,J. Chem. Soc. Dalton Trans., in press.  相似文献   

5.
《Polyhedron》1988,7(12):1067-1070
Anionic [Rh(diolefin)X2] species (X = Cl, Br) have been prepared and their reactions studied. The reactions with monodentate ligands led to neutral tetracoordinated complexes, and with N-donor bidentate ligands (Rh : LL = 2 : 1) gave Rh(X)(diolefin)(LL), [Rh(diolefin)(LL)]+[Rh(diolefin)X2], or [Rh(diolefin)(LL)]X compounds, depending on the nature of LL or X. Reactions with carbon monoxide involved diolefin displacement. A trichlorostannato complex was obtained from the [Rh(COD)Cl2] species. Reactions of [Rh(COD)Br]2 with bidentate N-donor ligands were also studied.  相似文献   

6.
Summary Kinetic parameters are reported for aquation of the tris-(4-methyl-1,10-phenanthroline) iron(II) [Fe(4-Mephen)3]2+, cation and for its reactions with hydroxide, cyanide, and peroxodisulphate. Activation volumes have been determined for the two last-named reactions; they reflect the importance of solvation changes in transition state formation.  相似文献   

7.
Abstract

The ligand exchange reaction between [M(phen)3]2+ and [M(DIP)3]2+ (where M is the same and M = FeII or NiII, phen = 1,10-phenanthroline, DIP = 4,7-diphenyl-1,10-phenanthroline) has been investigated by reversed phase ion-paired chromatography (RP-IPC). The effect of pH and solvent on the ligand-exchange reaction is studied by monitoring the variation in chromatograms with time after mixing. The results have shown that the ligand exchange reaction between [M(phen)3]2+ and [M(DIP)3]2+ takes place in the pH range of 3–8 and the rate of reaction for nickel(II) complexes is about two times slower than that for iron(II) complexes. Experiments on the effect of various solvents on the ligand-exchange reaction have revealed that the rate of reaction is enhanced by the solvent in the following order: (CH3)2CO > CHCl3 ≥ CH2Cl2 > CH3CN > CH3OH. Elemental analysis and UV-visible spectroscopy confirmed that the products obtained from the ligand-exchange reaction are mixed-ligand complexes containing phen and DIP ligands, i.e., [M(phen)2(DIP)]2+ and [M(phen)(DIP)2]2+.  相似文献   

8.
The synthesis of the ligand, m-12N3O-dimer (1,3-bis(1-oxa-4,7,10-triazacyclododecan-7-yl)methyl)benzene, L), and the stability and hydrolysis constants of its dinuclear Zn(II) and Cu(II) complexes are reported, in addition to the effect of pH on HPNP (2-hydroxypropyl-4-nitrophenylphosphate) hydrolysis reaction rates promoted by these complexes. Various structural possibilities of the [Zn2L] and [Cu2L] hydrolytic species derived from solution equilibrium modeling are predicted from density functional theory (DFT) studies to correlate with the promoted HPNP hydrolysis reaction rates and to establish the structure–function–reactivity relationship. Upon deprotonation [Zn2L(OH)]3+ tends to form a structure with a “closed-form” conformation where it is not possible for para-isomers. At pH >8, the formation of the closed-form [Zn2L(OH)2]2+ and [Zn2L(μ-OH)(OH)2]+ species led to faster promoted HPNP hydrolysis rates than the [Zn2L(OH)]3+ species. On the other hand, the observed rates of the Cu2L-promoted HPNP hydrolysis reaction were much slower than those of the [Zn2L]-promoted ones due to formation of the inactive, di-μ-OH? bridged closed-form [Cu2L(μ-OH)2]2+ structure at high pH. The effects of solvent molecules and the use of higher DFT computation levels, i.e., M06 and M06–2X, in conjunction with cc-pVDZ and cc-pVTZ basis sets on the DFT-predicted structures for both [Cu(12N4)(H2O)]2+ and [Zn(12N3O)(H2O)2]2+ complexes were also evaluated and compared with those using the B3LYP/6–31G* method.  相似文献   

9.
Syntheses and Characterizations of the First Tris and Tetrakis(trifluoromethyl) Palladates(II) and Platinates(II), [M(CF3)3(PPh3)] and [M(CF3)4]2— (M = Pd, Pt) Tris(trifluoromethyl)(triphenylphosphino)palladate(II) and platinate(II), [M(CF3)3PPh3], and the tetrakis(trifluoromethyl)metallates, [M(CF3)4]2— (M = Pd, Pt), are prepared from the reactions of [MCl2(PPh3)2] and Me3SiCF3 / [Me4N]F or [I(CF3)2] salts in good yields. [Me4N][M(CF3)3(PPh3)] crystallize isotypically in the orthorhombic space group Pnma (no. 62) with Z = 4. The NMR spectra of the new compounds are described.  相似文献   

10.
New selenidoantimonats [Ni(dien)2]2Sb2Se6 ( 1 ), [Mn(dien)2]2(SbSe4)(Cl) ( 2 ), [Co(dien)2]2(SbSe4)(Br) ( 3 ), and [Co(dien)2]3(SbSe4)2 ( 4 ) (dien = diethylenetriamine) were solvothermally synthesized in dien solvent at 180 °C. The crystal structure of 1 consists of two octahedral [Ni(dien)2]2+ cations and a mixed‐valent [Sb2Se6]4? anion. The isolated [Sb2Se6]4? anion is formed by a SbIIISe3 trigonal pyramid and a SbVSe4 tetrahedron sharing a common corner. 2 and 3 are composed of octahedral [M(dien)2]2+ cations, tetrahedral [SbSe4]3? anions and halide ions forming an extended network through hydrogen‐bonding interactions. In 4 the [Co(1)(dien)2]2+, [Co(2)(dien)2]2+ and [SbSe4]3? ions form layered structures via N–H···Se hydrogen bonds. The [Co(3)(dien)2]2+ ion is located between the layers, and interacts with the layers by N–H···Se bonds. The synthesis and solid state structural studies on the title compounds show that the higher reaction temperature is helpful for the formation of selenidoantimonate(V) compounds in the synthesis of selenidoantimonate from the M2+/Sb/Se/dien system. 1 – 4 start to decompose at temperature about 210 °C in N2 atmosphere. They lose dien ligands at a wide temperature range of 210–450 °C with multisteps for 1 – 3 and a single step for 4 .  相似文献   

11.
Metal Complexes of Biologically Important Ligands. CIII. [1] Palladium(II), Platinum(II), Ruthenium(II), Rhodium(III), and Iridium(III) Complexes of Desoxyfructosazine The reactions of the pyrazine derivative desoxyfructosazin(pz) with K2PtCl4 and with the chlorobridged [M(PR3)Cl2]2 (M = Pd, Pt), [(η5-C5Me5)MCl2]2 and [(η6-p-Cymol)RuCl2]2 give the watersoluble complexes cis-Cl2Pt(pz)2, (R3P)(Cl)M(pz)M(Cl)(PR3) (M = Pd, Pt), (η5-C5Me5)(Cl)2M(pz)M(Cl)25-C5Me5) (M = Rh, Ir), (η6-p-Cymol)(Cl2)Ru(pz)Ru(Cl)26-p-Cymol).  相似文献   

12.
《Polyhedron》1988,7(5):417-418
The synthesis and characterization of the platinum metal—1,3-diaryltriazenido complexes [Ru(ArNNNAr)(CO)3]2, [Ru(ArNNNAr)2]2, cis-Ru(ArNNNAr)2(CO)2, MX2(ArNNNAr)(PPh3)2 (M = Ru, Os; X = Cl, Br) and M′(ArNNNAr)3 (M′= Ru, Os, Rh and Ir) are reported. Axial ligand substitution in [Ru(ArNNNAr)(CO)3]2 and adduct formation by [Ru(ArNNNAr)2]2 are described. In contrast to other known Ru(II)/Ru(II) “lantern” molecules, the species [Ru(ArNNNAr)2]2 have measured magnetic moments equivalent to ca one unpaired electron per dimer, which are presumably due to population of the spin states σ2π4δ2π*4 and σ2π4δ2π*3σ*1.  相似文献   

13.
Under positive ion chemical ionization conditions with ammonla at relatively low pressure, aromatic nitro compounds do not form [M + H]+ ions but often form ionic clusters [M + NH4]+ and [M + N2H7]+. Nitrobenzene forms a cluster [2M + NH4]+ and aniline, formed by nucleophilic substitution, leads to a cluster [anilinium ion + nitrobenzene]+. The dinitrobenzenes form [M + NH4]+ clusters and show evidence of nitroaniline formation and clustering. 1,3,5-Trinitrobenzene gives little indication of clustering or of substitution. The six isomers of trinitrotoluene appear to be stabilized by the methyl group and form clusters up to [M + N3H10]+. Nucleophilic substitution leads to dinitrotoluidines, which also form clusters with ammonium ions.  相似文献   

14.
The intermediacy of metallocarbenes in decomposition reactions of iodonium ylides with [Rh2(OAc)4] was established by comparison with reactions of the corresponding diazo compounds. The sensitivity of the RhII-catalyzed intermolecular cyclopropane formation from substituted styrenes and bis(methoxycarbonyl)(phenyliodono)methanide ( 1a ) or dimethyl diazomalonate ( 1b ) is identical. The Hammett plot (with σ+) has a slope of ?0.47. Iodonium ylides and diazo compounds afford the same products in [Rh2(OAc)4]-catalyzed cyclopropane formations, cycloadditions, and intramolecular CH insertions, and exhibit the identical selectivity in intramolecular competitions for cyclopropane formation and insertion. The intramolecular CH insertion of the ylide 20c , when carried out in the presence of a chiral catalyst ([Rh2{(?)-(S)-ptpa}4]), results in formation of 21a having an ee of 67%, identical to the ee obtained with the diazo compound 20b .  相似文献   

15.
1H NMR spectroscopy was applied to study the reactions of palladium(II) complexes, cis-[Pd(dpa)Cl2] and cis-[Pd(dpa)(H2O)2]2+ (dpa is 2,2′-dipyridylamine acting as a bidentate ligand) with the dipeptides methionylglycine (Met-Gly) and histidylglycine (His-Gly), and the N-acetylated derivatives of these dipeptides, MeCOMet-Gly and MeCOHis-Gly. All reactions were carried out in the pH range 2.0–2.5 with equimolar amounts of the palladium(II) complex and the peptide at two different temperatures, 25 and 60 °C. In the reactions of cis-[Pd(dpa)Cl2] and cis-[Pd(dpa)(H2O)2]2+ with Met-Gly and His-Gly, no hydrolysis of the peptide bond was observed. The final product in these reactions was the [Pd(dpa)2]2+ complex. The square-planar structure of this complex was confirmed by X-ray analysis. The reaction of the cis-[Pd(dpa)(H2O)2]2+ complex with the MeCOHis-Gly and MeCOMet-Gly peptides under the previously mentioned experimental conditions was remarkably selective in the cleavage of the amide bond involving the carboxylic group of methionine in the side chain. The modes of coordination of cis-[Pd(dpa)Cl2] and cis-[Pd(dpa)(H2O)2]2+ in the reactions with the non-acetylated peptides and the total steric inhibition of the hydrolytic reaction between cis-[Pd(dpa)(H2O)2]2+ and MeCOHis-Gly can be attributed to the steric bulk of the palladium(II) complex. This finding should be taken into consideration in designing new palladium(II) complexes for the regioselective cleavage of peptides and proteins.  相似文献   

16.
The [M(dithiocarbamato)(Mol)]Cl complexes [M = Pd or Pt; dithiocarbamato = DMDT (Me2NCS 2) or ESDT (EtO2CCH2MeNCS 2); Mol = L-methioninol (L-2-amino-4-methylthio-1-butanol)] have been prepared by reacting methioninol with the appropriate [M(dithiocarbamato)Cl] n complex in a 1:1 molar ratio in chlorinated hydrocarbons. By operating at a 1:2 molar ratio, the binuclear species [M2(dithiocarbamato)2(Mol)Cl2] were obtained. The complexes were characterized by i.r., n.m.r. and electrospray ionisation (ESI) mass spectra and by t.g.a. The [M(dithiocarbamato)(Mol)]Cl species are ionic and contain S,N-chelated methioninol. The ligand forms an S,N bridge between two metal atoms in the binuclear species, whose formation is confirmed by the presence of the deprotonated molecular ion in the ESI negative ion mode.  相似文献   

17.
Summary Ligand-field (LF) photolysis of aqueous alkaline solutions of K4[M(CN)8] (M = Mo or W) containing KCN produces [MO(CN)5]3– species. NaCs2]MO(CN)5] was isolated and characterised by u.v.-vis., i.r. and Raman spectroscopy. In addition, the reactions of [MO(OH)(CN)4]3– with free CN are described and the relations between octa-, penta- and tetra-cyanocomplexes are summarised.  相似文献   

18.
The kinetics of the bromate oxidation of tris(1,10-phenanthroline)iron(II) (Fe(phen)32+) and aquoiron(II) (Fe2+ (aq)) have been studied in aqueous sulfuric acid solutions at μ = 1.0M and with Fe(II) complexes in great excess. The rate laws for both reactions generally can be described as -d [Fe(II)]/6dt = d[Br?]/dt = k[Fe(II)] [BrO?3] for [H+]0 = 0.428–1.00M. For [BrO?3]0 = 1.00 × 10?4M. [Fe2+]0 = (0.724–1.45)x 10?2 M, and [H+]0 = 1.00M, k = 3.34 ± 0.37 M?1s?1 at 25°. For [BrO?3]0 = (1.00–1.50) × 10?4M, [Fe2+]0 = 7.24 × 10?3M ([phen]0 = 0.0353M), and [H+]0 = 1.00M, k = (4.40 ± 0.16) × 10?2 M?1s?1 at 25°. Kinetic results suggest that the BrO?3-Fe2+ reaction proceeds by an inner-sphere mechanism while the BrO?3-Fe(phen)32+ reaction by a dissociative mechanism. The implication of these results for the bromate-gallic acid and other bromate oscillators is also presented.  相似文献   

19.
We report the synthesis, characterization, and reactivity of a Cr(II) complex, [Cr(H2O)(LISQ)2] (1) [(LISQ)1? is o-iminothionebenzosemiquinonate(1?) π-radical], that is highly stable in solid state in the presence of air but undergoes spontaneous change in solution, both in the presence and absence of air. Physicochemical studies in solution show that a superoxo-CrIII species, [Cr(O2)(OH)(LISQ)2]? is generated initially in DMF solution of 1 in the presence of air owing to its immediate deprotonation followed by O2 binding to the deprotonated species. The formation of this superoxo-CrIII species is prominent and gradual in the presence of CH3OH, a scavenger of CrO2+ species. This Cr(O2)2+ species in turn is converted to another highly reactive O=Cr(IV) intermediate [O=Cr(OH)(LISQ)2]? which undergoes disproportionation producing an unstable O=Cr(V) species, [O=Cr(OH)(LISQ)2] and a stable Cr(III) compound, [Cr(OH)(DMF)(LISQ)2] (2). The rate of this disproportionation is enhanced in the presence of MnCl2, [N(n-Bu)4]PF6 and KSCN. The generated O=Cr(IV) species interacts with DNA with complete cleavage. The O=Cr(V) species slowly disappears from solution as revealed from EPR studies.  相似文献   

20.
DFT methods have been applied for the calculation of several ground-state properties of neutral and charged ruthenium(II) and osmium(II) tin trihydride complexes bearing N-donor, P-donor and C-donor ancillary ligands in their coordination sphere. Complexes of the type M(SnH3)(Tp)(PPh3)P(OMe)3, M(SnH3)(Cp)(PPh3)P(OMe)3 and [M(SnH3)(Bpy)2P(OMe)3]+ (M = Ru, Os; Tp = tris(pyrazol-1-yl)borate; Cp = cyclopentadienyl ion; Bpy = 2,2′-bipyridine) have been studied using the EDF2 and B3PW91 functionals. The same calculations have been carried out also on the corresponding [M]-CH3 and [M]-H compounds, to compare the electronic features of the different reactive ligands coordinated to the same metal fragments. Charge distribution analyses were used to give insight into the roles of the transition metal centres and the ancillary ligands on the properties of the coordinated SnH3 group. The molecular orbitals of the methyl- and trihydrostannyl-complexes were compared to understand the nature of the [M]-SnH3 bond and the electronic transitions of these species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号