首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using scanning tunneling microscopy we have studied the reconstruction on Au(1 1 n) surfaces in ultra-high vacuum and in electrolyte. Similar to the well-known (5 × 20) quasi-“hex” reconstruction on Au(0 0 1), the reconstruction consists of parallel reconstruction lines along the steps indicative of a higher atom density in the first Au layer. In contrast to nominally flat Au(0 0 1) where the reconstruction period is 1.44 nm, we find considerably larger reconstruction periods (1.8−1.96 nm) on incidentally flatter regions of nominal Au(1 1 9), Au(1 1 11), and Au(1 1 17) surfaces. The enlarged reconstruction period is attributed to the stress field on stepped surfaces. In agreement with previous studies we find a reconstruction free zone at the step edges.  相似文献   

2.
Diffusions of small cluster Pt6 on Pt(1 1 1) surface and Cu6 on Cu(1 1 1) are studied by molecular dynamics simulation, respectively. The atomic interaction is modeled by the semiempirical potential. The results show that the diffusion processes in the two systems are far different. For example, on Pt(1 1 1) surface, the hopping of single atom and the shearing of two atoms of hexamer only occur on the adatom(s) adsorbed at B-step, while on Cu(1 1 1) surface they can appear on the adatom(s) either at A-step or B-step. To the concerted translation of the parallelogram hexamer, the anisotropy in the diffusion path is observed in the two systems, the mechanisms and then the preferential paths, however, are completely different. The reasons for these diffusion characteristics and differences are discussed.  相似文献   

3.
The simulations of field-evaporation processes for surface atoms on W(0 1 1) and Mo(0 1 1) surfaces are implemented using first-principles calculations based on the real-space finite-difference method. The threshold values of the external electric field for evaporation of the surface atoms, which are ∼6 V/Å for tungsten and ∼5 V/Å for molybdenum, are in agreement with the experimental results. While the threshold value of the electric field and the local-field enhancement around the evaporating atoms agree with those expected from the conclusion of the previous study using structureless jellium, the induced charge around the surface atom has a significant difference from that obtained by the jellium model.  相似文献   

4.
We study systematically the dimer diffusion on a series of metal fcc(0 0 1) surfaces. The atomic interactions are modeled by the realistic model potentials including embedded-atom method potential, surface-embedded-atom method potential, and Rosato-Guillopé-Legrand potential. Based on the results of the static calculations and the molecular dynamics simulations, three different kinds of fcc(0 0 1) surfaces can be distinguished named hard, middle, and soft. On the different kind of surfaces, not only the dominant diffusion mechanism but also the physical model for exchange mechanism is different. In addition, besides the conventional hopping and exchange mechanisms, some other interesting diffusion mechanisms for dimers are observed in our molecular dynamics simulations such as exchange rotation mechanism, cooperative hopping mechanism, and cooperative exchange mechanism.  相似文献   

5.
The results of a theoretical study on the stability of fcc (1 1 1) metal surfaces to certain commensurate-incommensurate reconstructive phase transformations is presented. Specifically, we have performed computer simulation studies of the 22×√3 surface reconstruction of Au(1 1 1). This reconstruction involves a uniaxial contraction of the top monolayer corresponding to a surface strain of about 4.3% and has been observed to be the stable structure for the clean surface at low temperatures. The driving force for the reconstruction has been associated with the quantity (fγ), where f is the surface stress and γ is the surface free energy, while the opposing force is due to the disregistry with the underlying lattice. A continuum model yields a stability criterion that depends on the knowledge of a small number of physical quantities: f, γ, the equilibrium nearest-neighbor spacing r1 and the shear modulus G. We have performed molecular dynamics simulations as a general stability analysis of these types of reconstructions. The results are in excellent agreement with the continuum model. The simulations using embedded-atom method potentials also accurately reproduce many observed features of the reconstruction on Au(1 1 1).  相似文献   

6.
The step configuration of a vicinal Si surface is studied under electromigration and a gradient of temperature. An abrupt transition (ΔT = 4 °C) from step-meandering to step bunching is found at 1225 °C for a step-down direct-current direction. This transition starts by random fluctuations which then extend on the whole surface. The transition is studied in the framework of a linear stability analysis of the usual Burton-Cabrera-Frank model by comparing the amplification factors of step-meandering and step bunching instabilities. Both compete at a given temperature, but since the amplification factors behave differently with temperature, bunching abruptly supersedes meandering above a critical temperature.  相似文献   

7.
Early stages of rare-earth metal (Yb and Eu) growth on a vicinal, single-domain Si(1 0 0)2 × 1 surface have been studied in the coverage range of 0.1-0.3 monolayer (ML) by low energy electron diffraction, scanning tunneling microscopy, and synchrotron radiation photoemission spectroscopy. We show that Yb induces the 2 × 3 periodicity in the whole range of coverage studied. The 2 × 3 reconstruction coexists with the local 3 × 2/4 × 2 structure at about 0.2 ML of Yb. In contrast, Eu forms the 3 × 2 periodicity at 0.1-0.2 ML, whereas this structure is converted into the 2 × 3 phase at about 0.3 ML. The atomic arrangement and electronic properties of these reconstructions and the adsorbate-mediated modification of surface morphology are investigated.  相似文献   

8.
S.A. Teys 《Surface science》2006,600(21):4878-4882
The vicinal Si(1 1 1) surface, inclined towards the direction, was investigated by scanning tunnelling microscopy and spot profile analysing low energy electron diffraction. It has been established that the surface, consisting of regularly spaced triple steps and (1 1 1) terraces with a width equal to that of a single unit cell of the Si(1 1 1)-7 × 7 surface structure, has the (7 7 10) orientation. An atomic model of the triple step is proposed.  相似文献   

9.
Classical molecular dynamics (MD) simulations are conducted to examine the atomic-scale friction behavior of an infinite flat-flat contact between copper(0 0 1) and diamond(1 1 1) surfaces. Two types of diamond surface, namely H-free and hydrogenated, are constructed and on each of them the copper counterface is brought to slide along the [1 1 −2] and [1 −1 0] crystallographic directions with a variety of loads. The simulation results demonstrate that the hydrogen atoms chemisorbed to the diamond surface can to large extent eliminate the directional dependency of its friction behavior with copper. Under pressures less than 30 GPa, the sliding between copper and hydrogenated is wearless. In this period, the shear stress of them just slightly increases to 0.6 GPa. Between 30 GPa and 32 GPa, copper atoms near the interface begin to be worn and incorporate into the diamond substrate and this causes a sharp shift from 0.6 GPa to 2.7 GPa in their shear stress. In contrast, the sliding process between copper and H-free diamond is always wearless even under pressure beyond 40 GPa. The H-free [1 −1 0] model exhibits much higher shear stress than H-free [1 1 −2] under pressures less than 35 GPa. Beyond 35 GPa, they present nearly consistent shear stress evolution. Moreover, the simulations for hydrogenated diamond models suggest that their friction behavior is independent on sliding velocity only under wearless sliding regime.  相似文献   

10.
M. Lindenblatt 《Surface science》2006,600(18):3624-3628
Time-dependent density functional theory for the electronic degrees of freedom has been combined with Ehrenfest dynamics for the nuclei to simulate electron-hole pair excitation due to electronic friction during the chemisorption of hydrogen atoms on an Al(1 1 1) surface. The H-atoms are assumed to be spin-unpolarized in the simulations. Trajectories starting with a hydrogen atom at rest above either the on-top or the fcc-hollow site evolve in qualitatively very different ways: at the fcc-hollow position the H-atom acquires sufficient kinetic energy in the chemisorption well to penetrate into the Al-substrate, thereby increasing the coupling of the motion of the H-atom to the substrate electrons. The electronic excitation spectra, however, are roughly characterized by an exponential decay with similar fictitious temperature parameters of the order of 103 K for both kinds of trajectories. The energy dissipation into electron-hole pairs and the nonadiabatic contribution to the force acting on the hydrogen atom have been calculated along the trajectories.  相似文献   

11.
We have studied the scaling behavior of two-dimensional island density during submonolayer growth of CaF2 on vicinal Si(1 1 1) surfaces using scanning tunneling microscopy. We have analyzed the morphology of the Si(1 1 1) surfaces where CaF2 partial monolayers with coverages of about 0.1 monolayer are deposited at ∼600 °C. The number density of terrace nucleated islands increases with substrate terrace width l as ∼l4 in a low island density regime. This scaling behavior is consistent with predictions for the case of the irreversible growth of islands.  相似文献   

12.
Tong Zhao  John D. Weeks   《Surface science》2005,580(1-3):107-121
We study current-induced step bunching and wandering instabilities with subsequent pattern formations on vicinal surfaces. A novel two-region diffusion model is developed, where we assume that there are different diffusion rates on terraces and in a small region around a step, generally arising from local differences in surface reconstruction. We determine the steady state solutions for a uniform train of straight steps, from which step bunching and in-phase wandering instabilities are deduced. The physically suggestive parameters of the two-region model are then mapped to the effective parameters in the usual sharp step models. Interestingly, a negative kinetic coefficient results when the diffusion in the step region is faster than on terraces. A consistent physical picture of current-induced instabilities on Si(1 1 1) is suggested based on the results of linear stability analysis. In this picture the step wandering instability is driven by step edge diffusion and is not of the Mullins–Sekerka type. Step bunching and wandering patterns at longer times are determined numerically by solving a set of coupled equations relating the velocity of a step to local properties of the step and its neighbors. We use a geometric representation of the step to derive a nonlinear evolution equation describing step wandering, which can explain experimental results where the peaks of the wandering steps align with the direction of the driving field.  相似文献   

13.
We report an ab initio study of electron-phonon interactions on the Be(0 0 0 1) surface. The calculations based on density-functional theory were carried out using a linear response approach in the plane-wave pseudopotential representation. The phonon-induced contribution to excited hole (electron) lifetime broadening is calculated for the zone center surface state. The obtained results show a rather strong momentum dependence.  相似文献   

14.
We have performed ab initio Density Functional Theory (DFT) based calculations to observe the reactivity of the Pd(2 1 1) and Cu(2 1 1) surfaces towards O2. In order to properly address the adsorption dynamics, the static potential energy surface calculations have been complemented with first principles molecular dynamics calculations, which reveal interesting steering effects that complicate the dissociation dynamics. We have found that on both surfaces the step microfacets are very reactive and the dissociation of the O2 molecule at room temperature occurs mostly on those sites.  相似文献   

15.
We report and model calculations of nanostripes formation of the Cu(3 3 2) surface obtained by oxygen-induced reconstruction. Scanning tunnelling microscope (STM) results with atomic resolution reveal alternate facets of clean Cu(1 1 1) and Cu(1 1 0)-O(2×1) along the [−1 1 0] direction, with the same average direction of Cu(3 3 2). At the edge between the two facets, oxygen is absorbed in a pseudo threefold site of the unreconstructed Cu(3 3 2). Tuneable periodicity, from 3 to 10 nm, is obtained by controlled change of the surface treatment. We discuss the formation of the periodic nanostructures and the mechanism driving the reconstruction via model calculations.  相似文献   

16.
A scanning tunneling microscopy/atomic force microscopy study is presented of a kinetically driven growth instability, which leads to the formation of ripples during Si homoepitaxy on slightly vicinal Si(0 0 1) surfaces miscut in [1 1 0] direction. The instability is identified as step bunching, that occurs under step-flow growth conditions and vanishes both during low-temperature island growth and at high temperatures. We demonstrate, that the growth instability with the same characteristics is observed in two dimensional kinetic Monte Carlo simulation with included Si(0 0 1)-like diffusion anisotropy. The instability is mainly caused by the interplay between diffusion anisotropy and the attachment/detachment kinetics at the different step types on Si(0 0 1) surface. This new instability mechanism does not require any additional step edge barriers to diffusion of adatoms. In addition, the evolution of ripple height and periodicity was analyzed experimentally as a function of layer thickness. A lateral “ripple-zipper” mechanism is proposed for the coarsening of the ripples.  相似文献   

17.
G.L. Beltramo 《Surface science》2007,601(8):1876-1885
In this paper we introduce a new experimental approach to determine the potential dependence of the step line tension on metal electrodes in contact with an electrolyte: (0 0 1) and (1 1 n) surfaces of single crystal gold electrodes were investigated by impedance spectroscopy in solutions containing weakly adsorbing anions, such as , F and . Within the limits of error the shift in the potential of zero charge is proportional to the step density of the vicinal surfaces indicative of a well-defined dipole moment per step length. The dipole moments per step atom are 6.8 ± 0.8, 5.2 ± 0.4, 5.8 ± 0.5 × 10−3 eÅ for , , and F containing electrolytes, respectively. Using the values for the pzc and the potential dependence of the capacitance curves, the potential dependence of the surface tension of the vicinal surfaces is determined. The line tension of the steps is then calculated from the difference between the surface tension of the stepped and the step free surface. Our results represent the first experimental confirmation of a recent theoretical model proposing that in absence of specifically adsorbed ions the step line tension should decrease (roughly linear) with potential.  相似文献   

18.
A simple, rigid pair-potential model is applied to investigate the dynamics of the (0 0 0 1) α-Al2O3 and α-Cr2O3 surfaces using the molecular dynamics technique. The simulations employ a two-stage equilibration process: in the first stage the simulation-cell size is determined via the constant-stress ensemble, and in the second stage the equilibration of the size-corrected simulation cell is continued in the canonical ensemble. The thermal expansion coefficients of bulk alumina and chromia are evaluated as a function of temperature. Furthermore, the surface relaxation and mean-square displacement of the atoms versus depth into the slab are calculated, and their behaviour in the surface region analysed in detail. The calculations show that even moderate temperatures (∼400 °C) give rise to displacements of the atoms at the surface which are similar to the lattice mismatch between α-alumina and chromia. This will help in the initial nucleation stage during thin film growth, and thus facilitate the deposition of α-Al2O3 on (0 0 0 1) α-Cr2O3 templates.  相似文献   

19.
The Mo(1 1 2) and Mo(1 1 1) surfaces have been studied by STM and DFT/GGA modeling. Due to high quality and cleanness of the surfaces, for the first time good STM images of large fragments of the Mo(1 1 2) and Mo(1 1 1) have been obtained. Lack of atomic resolution in the rows of the Mo(1 1 2) surface is attributed to flatness of distribution of density of the electronic states along the rows. This suggestion is illustrated by comparison of STM images for Mo(1 1 1) and Mo(1 1 2) and model calculations of STM pictures for these surfaces.  相似文献   

20.
L.K. Zang  Z.Y. Pan  L. Zhou  J. Zhu 《Surface science》2006,600(3):527-531
In this paper, the deposition of Cu13 onto Cu(1 1 1) surface through argon buffer layers was investigated by molecular dynamics (MD) simulations. The interactions between Cu-Cu, Cu-Ar, and Ar-Ar were described by Finnis-Sinclair (FS) tight-binding potential and L-J potential, respectively. The impact energy was chosen to be 2-6 eV/atom in order to compare with experimental results. It was observed that with Ar-buffer layers, the Cu cluster deposited on the surface may retain its free cluster symmetry (Ih). Whereas, on originally bare Cu surface, the deposited Cu cluster lost its original symmetry completely and was recrystalized to have the same fcc structure as the substrate. The Ar-buffer dissipates most of the translational energy of the incident cluster. Therefore, it prevents the cluster from being overheated upon impinging. Furthermore, the interaction between Ar and Cu benefits the confinement of the cluster structure. Our study shows that with Ar-buffer layers, the lateral spread of deposited clusters is 20% smaller than that on the bare Cu surface. This is consistent with the experimental findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号