首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Crystallization is achieved in amorphous Ge2Sb2Te5 films upon irradiation with a single femtosecond laser pulse. Transmission electron microscopy images evidence the morphology of the crystallized spot which depends on the fluence of the femtosecond laser pulse. Fine crystalline grains are induced at low fluence, and the coarse crystalline grains are obtained at high fluence. At the damage fluence, ablation of the films occurs.  相似文献   

2.
The crystallization dynamics of as-deposited amorphous Ge2Sb2Te5 films induced by nano- and picosecond single laser pulse irradiation is studied using in situ reflectivity measurements. Compared with nanosecond laser pulse, the typical recalescence phenomenon did not appear during the picosecond laser pulse-induced crystallization processes when the pulse fluence gradually increased from crystallization to ablation threshold. The absence of melting and recalescence phenomenon significantly decreased the crystallization time from hundreds to a few tens of nanoseconds. The role of pulse duration time scale on the crystallization process is qualitatively analyzed.  相似文献   

3.
The electrical conductivity, Seebeck coefficient, and Hall coefficient of three-micron-thick films of amorphous Ge2Sb2Te5 have been measured as functions of temperature from room temperature down to as low as 200 K. The electrical conductivity manifests an Arrhenius behavior. The Seebeck coefficient is p-type with behavior indicative of multi-band transport. The Hall mobility is n-type and low (near 0.07 cm2/V s at room temperature).  相似文献   

4.
The nucleation and grain growth of the Ge2Sb2Te5 (GST) thin films were studied using high voltage electron microscope operated at 1250 kV. As a result, we have found that 2 nm-sized nucleus forms as a cluster which atoms are arranged regularly at the stage of nucleation prior to the formation of grains having crystal structure. The high-resolution transmission electron microscopy study and fast-Fourier transformations revealed that coexistence of face-centered-cubic (FCC) and hexagonal structure occurs, and formation of twin defect is found in the hexagonal structure during the grain growth as the annealing temperature is increased. GST grain having the hexagonal structure grow from the surface, and the growth proceeded perpendicular to the [0 0 0 1], namely the path parallel to the (0 0 0 1) plane. Consequently, grain growth to a large-scale result in a lengthened shape.  相似文献   

5.
Ti/Ge2Sb2Te5/Ti thin films deposited by a sputtering method on SiO2/Si substrates were annealed at 400 °C in N2 atmosphere and characterized by using transmission electron microscopy (TEM) and Auger electron spectroscopy (AES) in order to investigate the inter-diffusion of the Ti/Ge2Sb2Te5/Ti system due to annealing. The TEM and AES results showed that the interface between the Ti and the Ge2Sb2Te5 layers was unstable and Ti atoms were incorporated into the Ge2Sb2Te5 thin film upon annealing. The Te and Sb atoms of the Ge2Sb2Te5 layer diffused into the Ti layer. The intermixing layers between the Ge2Sb2Te5 layer and two Ti layers were formed. These results indicate that the microstructural properties of the Ti/Ge2Sb2Te5/Ti systems can be degraded by the postgrowth thermal annealing.  相似文献   

6.
The atomic arrangement and grain growth of the hexagonal structured Ge2Sb2Te5 were investigated by a transmission electron microscopy study. Unlike the isotropic crystallization of face-centered-cubic (fcc) structured Ge2Sb2Te5, the hexagonal structured Ge2Sb2Te5 grain was preferably grown to a large degree with a specific direction. As a result, we have revealed that the grain growth occurred parallel to the (0 0 0 1) plane, and identified the atomic arrangement of the hexagonal structured Ge2Sb2Te5 having nine cyclic layers by analyzing the high-resolution transmission electron microscopy images and simulated images obtained in the direction of zone axis.  相似文献   

7.
田曼曼  王国祥  沈祥  陈益敏  徐铁峰  戴世勋  聂秋华 《物理学报》2015,64(17):176802-176802
本文采用双靶(ZnSb靶和Ge2Sb2Te5靶)共溅射制备了系列ZnSb掺杂的Ge2Sb2Te5(GST)薄膜. 利用X射线衍射、透射电子显微镜、原位等温/变温电阻测量、X射线光电子能谱等测试研究了薄膜样品的非晶形态、电学及原子成键特性. 利用等温原位电阻测试表明ZnSb掺杂的Ge2Sb2Te5薄膜具有更高的结晶温度. 采用Arrhenius 公式计算发现ZnSb掺杂的Ge2Sb2Te5薄膜的十年数据保持温度均高于传统的Ge2Sb2Te5薄膜的88.9℃. 薄膜在200, 250, 300和350℃ 下退火后的X射线衍射图谱表明ZnSb的掺杂抑制了Ge2Sb2Te5薄膜从fcc态到hex态的转变. 通过对薄膜的光电子能谱和透射电镜分析可知Zn, Sb, Te原子之间键进行重组, 形成Zn–Sb 和Zn–Te 键, 且构成非晶物质存在于晶体周围. 采用相变静态检测仪测试样品的相变行为发现ZnSb掺杂的Ge2Sb2Te5薄膜具有更快的结晶速度. 特别是(ZnSb)24.3(Ge2Sb2Te5)75.7薄膜, 其结晶温度达到250℃, 十年数据保持温度达到130.1℃, 并且在70 mW激光脉冲功率下晶化时间仅~64 ns, 远快于传统Ge2Sb2Te5薄膜的晶化时间~280 ns. 以上结果表明(ZnSb)24.3(Ge2Sb2Te5)75.7薄膜是一种热稳定性好且结晶速度快的相变存储材料.  相似文献   

8.
The thickness dependent crystallization behavior of thin amorphous Ge2Sb2Te5(GST) films sandwiched between different cladding materials has been investigated based on a thermodynamic model. It is revealed that there is a critical thickness below which the crystallization cannot occur. The critical thickness is determined by the energy difference Δγ between the crystalline GST/substrate interface energy and the amorphous GST/substrate interface energy, the melting enthalpy, and the mole volume. The calculated result is in good agreement with the experiments. Furthermore, the crystallization temperature is also affected by interface energy difference Δγ. Larger Δγ gives rise to a higher crystallization temperature, and vice versa. This impact becomes stronger as the film thickness is decreased.  相似文献   

9.
Four kinds of Y2O3 stabilized ZrO2 (YSZ) thin films with different Y2O3 content have been prepared on BK7 substrates by electron-beam evaporation method. Structural properties and surface morphology of thin films were investigated by X-ray diffraction (XRD) spectra and scanning probe microscope. Laser induced damage threshold (LIDT) was determined. It was found that crystalline phase and microstructure of YSZ thin films was dependent on Y2O3 molar content. YSZ thin films changed from monoclinic phase to high temperature phase (tetragonal and cubic) with the increase of Y2O3 content. The LIDT of stabilized thin film is more than that of unstabilized thin films. The reason is that ZrO2 material undergoes phase transition during the course of e-beam evaporation resulting in more numbers of defects compared to that of YSZ thin films. These defects act as absorptive center and the original breakdown points.  相似文献   

10.
Raman spectra and XPS studies of phase changes in Ge2Sb2Te5 films   总被引:1,自引:0,他引:1       下载免费PDF全文
刘波  宋志棠  张挺  封松林  Chen Bomy 《中国物理》2004,13(11):1947-1950
Ge_2Sb_2Te_5 film was deposited by RF magnetron sputtering on Si (100) substrate. The structure of amorphous and crystalline Ge_2Sb_2Te_5 thin films was investigated using XRD, Raman spectra and XPS. XRD measurements revealed the existence of two different crystalline phases, which has a FCC structure and a hexagonal structure, respectively. The broad peak in the Raman spectra of amorphous Ge_2Sb_2Te_5 film is due to the amorphous -Te--Te- stretching. As the annealing temperature increases, the broad peak separates into two peaks, which indicates that the heteropolar bond in GeTe_4 and the Sb-Sb bond are connected with four Te atoms, and other units such as (TeSb) Sb-Sb (Te_2) and (Sb_2) Sb-Sb (Te_2), where some of the four Te atoms in the above formula are replaced by Sb atoms, remain in crystalline Ge_2Sb_2Te_5 thin film. And from the results of Raman spectra and XPS, higher the annealing temperature, more Te atoms bond to Ge atoms and more Sb atoms substitute Te in (Te_2) Sb-Sb (Te_2).  相似文献   

11.
刘波  阮昊  干福熹 《中国物理》2002,11(3):293-297
In this paper, the crystallization behaviour of amorphous Ge2Sb2Te5 thin films is investigated using differential scanning calorimetry), x-ray diffraction and optical transmissivity measurements. It is indicated that only the amorphous phase to face-centred-cubic phase transformation occurs during laser annealing of the normal phase-change structure, which is a benefit for raising the phase-change optical disk's carrier-to-noise ratio (CNR). For amorphous Ge2Sb2Te5 thin films, the crystallization temperature is about 200℃ and the melting temperature is 546.87℃. The activation energy for the crystallization, Ea, is 2.25eV. The crystallization dynamics for Ge2Sb2Te5 thin films obeys the law of nucleation and growth reaction. The sputtered Ge2Sb2Te5 films were initialized by an initializer unit. The initialization conditions have a great effect on the reflectivity contrast of the Ge2Sb2Te5 phase-change optical disk.  相似文献   

12.
On the basis of an ab initio computational study, the present work provide a full understanding on the atomic arrangements, phase stability as well as electronic structure of Si2Sb2Te5, a newly synthesized phase-change material. The results show that Si2Sb2Te5 tends to decompose into Si1Sb2Te4 or Si1Sb4Te7 or Sb2Te3, therefore, a nano-composite containing Si1Sb2Te4, Si1Sb4Te7 and Sb2Te3 may be self-generated from Si2Sb2Te5. Hence Si2Sb2Te5 based nano-composite is the real structure when Si2Sb2Te5 is used in electronic memory applications. The present results agree well with the recent experimental work.  相似文献   

13.
The effects of Si doping on the structural and electrical properties of Ge2Sb2Te5 film are studied in detail. Electrical properties and thermal stability can be improved by doping small amount of Si in the Ge2Sb2Te5 film. The addition of Si in the Ge2Sb2Te5 film results in the increase of both crystallization temperature and phase-transition temperature from face-centered cubic (fcc) phase to hexagonal (hex) phase, however, decreases the melting point slightly. The crystallization activation energy reaches a maximum at 4.1 at.% and then decreases with increasing dopant concentration. The electrical conduction activation energy increases with the dopant concentration, which may be attributed to the increase of strong covalent bonds in the film. The resistivity of Ge2Sb2Te5 film shows a significant increase with Si doping. When doping 11.8 at.% of Si in the film, the resistivity after 460 °C annealing increases from 1 to 11 mΩ cm compared to the undoped Ge2Sb2Te5 film. Current-voltage (I-V) characteristics show Si doping may increase the dynamic resistance, which is helpful to writing current reduction of phase-change random access memory.  相似文献   

14.
In this paper, chemical mechanical planarization (CMP) of amorphous Ge2Sb2Te5 (a-GST) in acidic H2O2 slurry is investigated. It was found that the removal rate of a-GST is strongly dependent on H2O2 concentration and gradually increases with the increase in H2O2 concentration, but the static etch rate first increases and then slowly decreases with the increase in H2O2 concentration. To understand the chemical reaction behavior of H2O2 on the a-GST surface, the potentiodynamic polarization curve, surface morphology and cross-section of a-GST immersed in acidic slurry are measured and the results reveal that a-GST exhibits a from active to passive behavior for from low to high concentration of H2O2 . Finally, a possible removal mechanism of a-GST in different concentrations of H2O2 in the acidic slurry is described.  相似文献   

15.
We fabricated and analyzed the chemical states of carbon-doped (5.2–13.2 at.%) Ge2Sb2Te5 thin films on Si substrates using high-resolution, X-ray photoelectron spectroscopy with synchrotron radiation. Thin films were completely amorphous and their phase-change temperature was 150 °C higher than for un-doped GST. As the carbon doping concentration increased, new chemical states of Ge 3d with 29.9 eV and C 1s with 283.7 eV core-levels were observed. The doped carbon was bonded only with Ge in GST and doping was saturated at 8.7 at.%.  相似文献   

16.
The effect of heat treatment on the optical and electrical properties of Ge15Sb10Se75 and Ge25Sb10Se65 thin films in the range of annealing temperature 373-723 K has been investigated. Analysis of the optical absorption data indicates that Tauc's relation for the allowed non-direct transition successfully describes the optical processes in these films. The optical band gap (Egopt.) as well as the activation energy for the electrical conduction (ΔE) increase with the increase of annealing temperature (Ta) up to the glass transition temperature (Tg). Then a remarkable decrease in both the Egopt. and ΔE values occurred with a further increase of the annealing temperature (Ta>Tg). The obtained results were explained in terms of the Mott and Davis model for amorphous materials and amorphous to crystalline structure transformations. Furthermore, the deduced value of Egopt. for the Ge25Sb10Se65 thin film is higher than that observed for the Ge15Sb10Se75 thin film. This behavior was discussed on the basis of the chemical ordered network model (CONM) and the average value for the overall mean bond energy 〈E〉 of the amorphous system GexSb10Se90−x with x=15 and 25 at%. The annealing process at Ta>Tg results in the formation of some crystalline phases GeSe, GeSe2 and Sb2Se3 as revealed in XRD patterns, which confirms our discussion of the obtained results.  相似文献   

17.
In this study, a phase-change memory device was fabricated and the origin of device failure mode was examined using transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). Ge2Sb2Te5 (GST) was used as the active phase-change material in the memory device and the active pore size was designed to be 0.5 m. After the programming signals of more than 2×106 cycles were repeatedly applied to the device, the high-resistance memory state (reset) could not be rewritten and the cell resistance was fixed at the low-resistance state (set). Based on TEM and EDS studies, Sb excess and Ge deficiency in the device operating region had a strong effect on device reliability, especially under endurance-demanding conditions. An abnormal segregation and oxidation of Ge also was observed in the region between the device operating and inactive peripheral regions. To guarantee an data endurability of more than 1×1010 cycles of PRAM, it is very important to develop phase-change materials with more stable compositions and to reduce the current required for programming.  相似文献   

18.
通过反应溅射的方法,制备了N掺杂的Ge2Sb2Te5(N-GST)薄膜,用作相变存储器的存储介质.研究表明,掺杂的N以GeN的形式存在,不仅束缚了Ge2Sb2Te5 (GST)晶粒的长大也提高了GST的晶化温度和相变温度.利用N-GST薄膜的非晶态、晶态面心立方相和晶态六方相的电阻率差异,能够在同一存储单元中存储三个状态,实现相变存储器的多态存储功能. 关键词: 相变存储器 多态存储 N掺杂 2Sb2Te5')" href="#">Ge2Sb2Te5  相似文献   

19.
Titanium dioxide (TiO2) rutile single crystal was irradiated by infrared femtosecond (fs) laser pulses with repetition rate of 250 kHz and phase transformation of rutile TiO2 was observed. Micro-Raman spectra show that the intensity of Eg Raman vibrating mode of rutile phase increases and that of A1g Raman vibrating mode decreases apparently within the ablation crater after fs laser irradiation. With increasing of irradiation time, the Raman vibrating modes of anatase phase emerged. Rutile phase of TiO2 single crystal is partly transformed into anatase phase. The anatase phase content transformed from rutile phase increased to a constant with increasing of fs pulse laser irradiation time. The study indicates the more stable rutile phase is transformed into anatase phase by the high pressure produced by fs pulse laser irradiation.  相似文献   

20.
SnO2/In2O3 one-dimensional nano-core-shell structures have been synthesized at 1350 °C by thermal evaporation of the mixture of metal Sn, Fe(NO3)3 powders and In particles. The as-synthesized products have been characterized by energy-dispersive X-ray spectroscopy, selected-area electron diffraction and high-resolution transmission electron microscopy. Microstructure characterization indicates the orientation relationship between core and shell is , . The formation mechanism of this nano-core-shell structure can be attributed to the cover of In2O3 on the surface of SnO2 nanochains. The photoluminescence properties of the nano-core-shell structures have been measured. The PL spectrum shows some difference with the result from pure SnO2 and In2O3 nanostructure that be deemed to relate to interface defects in SnO2/In2O3 nano-core-shell structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号