首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The Munich pulsed low energy positron beam system (PLEPS) is now installed at the high intensity positron source (NEPOMUC) at the Munich Research Reactor FRM-II. In order to enhance the performance of the system several improvements have been implemented: two additional collinear detector ports have been installed. Therefore in addition to the normal lifetime measurements it is now possible to simultaneously perform Doppler-broadening, coincident Doppler-broadening and age momentum correlation experiments. An additional chopper was included to periodically suppress pulses and therefore to extend the standard time window of 20 ns for precise measurements of longer lifetimes. First test-experiments have been performed in May and July 2007. With all pulsing components in operation we achieved a count-rate of 1.4 × 104 counts per second. The total time resolution (pulsing and detector) was about 240 ps (FWHM) with a peak to background ratio up to 6 × 103:1.  相似文献   

2.
The in-pile positron source NEutron induced POsitron source MUniCh (NEPOMUC) of the new Munich research reactor FRM-II is now operated at the nominal reactor power of 20 MW. Recently, intensity and positron beam profile measurements were performed at 30 eV and 1 keV, respectively. For this purpose, NaI-scintillators detect the 511 keV γ-radiation of positrons that annihilate at a removable target in the beam line. The beam profile is determined with a micro-channel plate detector and a CCD-camera. In the present arrangement of NEPOMUC's instrumentation the positron beam is connected to a coincident Doppler broadening (CDB) facility and to a positron induced Auger electron spectroscopy (PAES) analysis chamber. First experiments were carried out in order to show the performance of these new spectrometers. An overview of the positron beam facility is given and first experimental results of PAES are presented.  相似文献   

3.
At the new high flux reactor FRM-II in Munich the accelerator MAFF (Munich accelerator for fission fragments) is under design. In the high neutron flux of 1014 n/cm2 s up to 1014 neutron-rich fission fragments per second are produced in the 1 g U-235 target. Ions with an energy of 30 keV are extracted from the ion source. In the mass separator two isotopes can be selected. One of the beams is used for low energy experiments, the other one is injected into an ECRIS (or EBIS) for charge breeding to a q/A≥0.16. A gas filled RFQ cooler is used for emittance improvement. The subsequent LINAC delivers beams with an energy ranging from 3.7 MeV/u to 5.9 MeV/u. New IH structures are being developed at the Munich tandem laboratory. A small storage ring is planned in a further stage to recycle the fission fragments. A thin target foil can be placed into this ring, e.g., for synthesis of super-heavy elements. The through-going beam tube has been installed in the heavy water tank of the reactor. Tests of the target ion source in a special oven to test long term stability and safety tests were in progress.  相似文献   

4.
The high intensity positron source NEPOMUC at the FRM-II in Munich enables measurement times for positron annihilation-induced Auger electron spectroscopy (PAES) of only 2.4 h/spectrum, in contrast to usual lab beams with measurement times up to several days. The high electron background due to surrounding experiments in the experimental hall of the FRM-II has been eliminated and hence background free experiments have become possible. Due to this, the signal to noise ratio has been enhanced to 4.5:1, compared to 1:3 with EAES. In addition, a long-term measurement has been performed in order to observe the contamination of a polycrystalline copper foil at 150 °C.  相似文献   

5.
The NEutron-induced POsitron source MUniCh (NEPOMUC) at the research reactor FRM II delivers a low-energy positron beam (E = 15-1000 eV) of high intensity in the range between 4 × 107 and 5 × 108 moderated positrons per second. At present four experimental facilities are in operation at NEPOMUC: a coincident Doppler-broadening spectrometer (CDBS) for defect spectroscopy and investigations of the chemical vicinity of defects, a positron annihilation-induced Auger-electron spectrometer (PAES) for surface studies and an apparatus for the production of the negatively charged positronium ion Ps. Recently, the pulsed low-energy positron system (PLEPS) has been connected to the NEPOMUC beam line, and first positron lifetime spectra were recorded within short measurement times. A positron remoderation unit which is operated with a tungsten single crystal in back reflection geometry has been implemented in order to improve the beam brilliance. An overview of NEPOMUC's status, experimental results and recent developments at the running spectrometers are presented.  相似文献   

6.
We show that the timing properties of a pulsed low-energy positron lifetime beam can be conveniently tested by an electron beam. We apply this method to study the time resolution of the beam and electron scattering in flat and ‘sawtooth’ shaped choppers. The results show that (i) time resolution of 160 ps is obtained, (ii) the scattering of the electrons and the secondary electron yield of the flat chopper make the time resolution worse and background poor, and (iii) both these problems can be solved by using a ‘sawtooth’ shaped chopper. We also compare these results to beam simulations.  相似文献   

7.
Measurements of interface trap density, effective generation lifetime (GL) and effective surface generation velocity have been performed using different methods on selected MOS structures prepared on nitrogen-doped Czochralski-grown (NCz) silicon. The application of the positron annihilation technique using a pulsed low energy positron system (PLEPS) focused on the detection of nitrogen-related defects in NCz silicon in the near surface region. In the case of p-type Cz silicon, all the results could be used for the testing of homogeneity. In n-type Cz silicon, positron annihilation was found insensitive to nitrogen doping.  相似文献   

8.
A new type positron beam system is being constructed in Wuhan university. The goal of this project is to build a positron beam which can measure positron lifetimes and has high moderation efficiency. The system utilizes a magnetically guided incident positron beam and the sample is biased to a high negative potential to achieve the desired implantation energies. A conventional tungsten moderator is replaced by a solid Ne moderator with high moderation efficiency (about 1%). A multi-functional target chamber for slow beam studies is designed, which can be used for positron annihilation lifetime spectroscopy (PALS), Doppler broadening (DB) and coincidence Doppler broadening (CDB) measurements.  相似文献   

9.
An intense slow positron beam using a 15 MeV LINAC (average current 1.25 × 1015 e/s) at the Radiation and Photochemistry Group, Chemistry Division of Argonne National Laboratory (ANL) has been proposed and studied. Computer simulated results optimizing the positron yield and distribution of energy and angle show that a slow positron production at 1010 e+/s is possible. A proposed design of an intense slow positron beam with optimal conditions of incident electron, converter/moderator configurations, and extraction/transportation is presented.  相似文献   

10.
In proton therapy, positron emitters are induced from 12C and 16O nuclei by protons on the beam path in the patient. Many studies for monitoring positron emitters with beam-induced PET technique have been performed by various groups to verify the proton beam range and the dose in the patient for quality assurance (QA). The QA methods proposed by some groups require accurate production cross sections of the positron emitters produced by protons, especially in the low-energy region. The aim of this study was to develop a method for measuring the production cross sections of positron emitters using standard equipment for proton therapy, and to measure the cross sections of positron emitters produced by low-energy protons and verify them in comparison with data of previous experiments. An 80-MeV proton beam was produced by a synchrotron, and the energy was degraded by polyethylene blocks to obtain various beam energies. The number of protons was estimated from the charge induced in a parallel-plate ionization chamber by protons. Low-energy protons of 14–70 MeV were used to bombard 12C-rich and 16O-rich target materials: namely, polyethylene and gelatinous water. The time-activity curve was then measured by a high-sensitivity PET scanner to extract the number of positron emitters produced in the target. The production cross sections for four reaction channels: 16O(p, pn)15O, 16O(p, 3p3n)11C, 16O(p, 2p2n)13N, and 12C(p, pn)11C were then measured. The cross sections for the 16O(p, pn)15O reaction channel were consistent with data of previous experiments within the uncertainties, while those of 12C(p, pn)11C were generally lower than data of previous experiments. These results suggested that further measurements of the production cross sections will be necessary.  相似文献   

11.
Hydrogen damage of AISI 304 stainless steel has been systemically investigated by measuring Doppler broadening of positron annihilation. Defect profiles of the S-parameter, the low-momentum annihilation fraction as a function of positron incident energy up to 30 keV (i.e. ∼1 μm depth) have been analyzed. Experimental results show that hydrogen damage between the surface and the bulk has a significant variation with depth, and strongly depends on the condition of hydrogen-charging, i.e. current density and charging time. It has been suggested that the increase in S-parameter near the surface after hydrogen-charging mainly comes from the formation of voids; however the increase in S-parameter in the bulk after hydrogen-charging mainly comes from the production of structural defects (dislocations). Defect densities induced due to hydrogen-charging in some cases (e.g. dislocation density in the bulk) are estimated based on the simple two-state trapping model.  相似文献   

12.
This paper describes the development and application of an intense slow positron beam at IHEP with regard to its two main components.The Variable-Energy Positron Lifetime Spectroscopy (VEPLS) based on the pulsing system consisting of a chopper,a prebuncher and a buncher has been constructed in order to meet the needs of materials science development.At present,the time resolution of the VEPLS can easily reach about 386 ps with a peak-to-background ratio of about 600:1.A plugged-in 22Na positron source section for adjusting the newly built experimental station and for increasing the beam operation efficiency has been constructed.A slow positron beam with an intensity of 2.5x105 e+/s and the beam profile whose diameter is 10 mm has been obtained;the moderation efficiency of the tungsten mesh moderator reaches 5.1x 10-4 as calculated with an original positron source activity of 52 mCi.  相似文献   

13.
As an image recording medium for transmission positron microscopes, imaging plates are quite useful and powerful. Imaging plates are also quite sensitive and the photon-stimulated luminescence (PSL) is linearly proportional to the positron intensity in six digits (106). No bulky or expensive equipment is necessary to accommodate in vacuum. Imaging plates can be set under bright lights, this is different from the photographic films. Darkness is only required during exposure and transfer to a reader. Slow Positron Facility at KEK, Japan was used to study the effect of “mono-chromatic” positron beam. Specimens were set just in front of an imaging plate. After a certain time of exposure, the imaging plates were processed by a reader. Used imaging plates can be used repeatedly after erased by ultra-violet lights. Images through samples can be obtained. Similar experiments using non-monochromatic (white) positrons and electrons have been performed at Teikyo University of Science and Technology (TUST) and Research Reactor Institute, Kyoto Univ. (RRI). Sealed 22Na positron source can be conveniently used for non-destructive tests.  相似文献   

14.
基于捕获的新型正电子束及应用   总被引:1,自引:1,他引:0  
吴奕初 《物理学进展》2005,25(3):258-272
基于捕获的新型正电子束技术是通过潘宁阱中捕获、约束和积累正电子而发展的新一代正电子束技术。本文介绍正电子的捕获、冷却,压缩技术,基于捕获的正电子束形成技术,以及该技术将来发展展望,最后讨论该技术在原子物理学和材料科学等多个领域的应用。  相似文献   

15.
A polarised positron source has been proposed for the design of the international linear collider (ILC). In order to optimise the positron beam, a measurement of its degree of polarisation close to the positron creation point is desired. In this contribution, methods for determining the positron polarisation at low energies are reviewed. A newly developed polarisation extension to GEANT4 will provide the basis for further polarimeter investigations.   相似文献   

16.
A longitudinal polarized positron beam is foreseen for the international linear collider (ILC). A proof-of-principle experiment has been performed in the final focus test beam at SLAC to demonstrate the production of polarized positrons for implementation at the ILC. The E166 experiment uses a 1 m long helical undulator in a 46.6 GeV electron beam to produce a few MeV photons with a high degree of circular polarization. These photons are then converted in a thin target to generate longitudinally polarized e + and e . The positron polarization is measured using a Compton transmission polarimeter. The data analysis has shown asymmetries in the expected vicinity of 3.4% and ∼1% for photons and positrons respectively and the expected positron longitudinal polarization is covering a range from 50% to 90%.   相似文献   

17.
王冠博  李润东  杨鑫  曹超  张之华 《物理学报》2017,66(8):82802-082802
研究堆慢正电子源是获得高强度慢正电子束流的有效方式,国际上己建成多座装置并获得广泛应用.与常规同位素慢正电子源相比,研究堆慢正电子源的物理过程复杂,影响末端束流强度的因素众多,对其进行深入研究与合理建模是未来在中国绵阳研究堆(CMRR)上构建慢正电子源的基础.本文厘清了研究堆慢正电子产生的关键过程与物理机理,建立了预测末端正电子束流强度的理论模型,找到了影响其末端强度的主要物理量:快正电子体产生率、慢化体有效表面积、慢化体扩散距离、慢正电子从表面被提取到靶环末端的效率、及束流系统提取效率.用多种实验结果对模型进行校验,包括多个同位素慢正电子源的效率测量值,以及PULSTAR研究堆慢正电子源测量结果,充分验证了模型正确性.根据模型对各物理量的影响因素进行了分析,找到了需着重关注的影响因素,对未来源/靶结构的设计给出建议.  相似文献   

18.
The Dzhelepov Laboratory of Nuclear Problems’ activity is aimed at developing three directions in radiation medicine: 3D conformal proton therapy, accelerator techniques for proton and carbon treatment of tumors, and new types of detector systems for spectrometric computed tomography (CT) and positron emission tomography (PET). JINR and IBA have developed and constructed the medical proton cyclotron C235-V3. At present, all basic cyclotron systems have been built. We plan to assemble this cyclotron at JINR in 2011 and perform tests with the extracted proton beam in 2012. A superconducting isochronous cyclotron C400 has been designed by the IBA-JINR collaboration. This cyclotron will be used for radiotherapy with proton, helium and carbon ions. The 12C6+ and 4He2+ ions will be accelerated to an energy of 400 MeV/amu, the protons will be extracted at the energy 265 MeV. The construction of the C400 cyclotron was started in 2010 within the framework of the Archarde project (France). Development of spectrometric CT tomographs may allow one to determine the chemical composition of a substance together with the density, measured using traditional CT. This may advance modern diagnostic methods significantly. JINR develops fundamentally new pixel detector systems for spectrometric CT. The time-of-flight (TOF) system installed in the positron emission tomograph (PET) permits essential reduction in the detector noise from occasional events of different positron annihilations. The micropixel avalanche photodiodes (MAPDs) developed at JINR allow a factor of 1.5 reduction in the resolution time for the PET TOF system and suppression of the noise level as compared to commercial PET. The development of a combined PET/MRI is of considerable medical interest, but it cannot be made with the existing PET tomographs based on detectors of compact photomultipliers due to strong alternating magnetic field of MRI. Change-over to detectors of micropixel avalanche photodiodes permits making a combined PET/MRI.  相似文献   

19.
A new positron gun (PG) will enable high sensitivity measurements in applications of positron annihilation spectroscopy in Romania. Some data concerning the design of a modular system for focussing, transport and acceleration of mono-energetic positrons in the range 0.8-50 keV have been obtained and experimenting on moderators and CDBS was performed. We present a short overview of the present status of the project and preliminary results from Coincidence Doppler Broadening Spectroscopy with a 22NaCl source, on Al samples. The entire positron gun system will be designed as a high-vacuum dedicated extension operating with two options: a 50 mCi 22NaCl source and in-line with the NIPNE cyclotron or a new intense compact cyclotron.  相似文献   

20.
The angular dependence of the γ-ray asymmetry relative to the plane formed by the directions of fission-fragment separation and longitudinal polarization of the thermal neutrons inducing 235U(n, f) fission was investigated. The results obtained confirm the existence of γ-ray emission asymmetry and the dependence of its coefficient on the angle between the axes of the fission-fragment and γ-ray detectors, revealed for the first time by the ITEP group at the FRM-II reactor in Munich. The observed T-odd effect of around ∼2 × 10−4 can be explained by the angular anisotropy of the γ-ray emission from fission fragments with large angular momenta oriented relative to the fission axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号