首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Series of CoxCr1−x thin films have been evaporated under vacuum onto Si (1 0 0) and glass substrates. Chemical composition and interface properties have been studied by modelling Rutherford backscattering spectra (RBS) using SIMNRA programme. Thickness ranges from 17 to 220 nm, and x from 0.80 to 0.88. Simulation of the energy spectra shows an interdiffusion profile in the thickest films, but no diffusion is seen in thinner ones. Microscopic characterizations of the films are done with X-ray diffraction (XRD) measurements. All the samples are polycrystalline, with an hcp structure and show a 〈0 0 0 1〉 preferred orientation. Atomic force microscopies (AFM) reveal very smooth film surfaces.  相似文献   

2.
Y.D. Su 《Applied Surface Science》2009,255(18):8164-8170
We deposit ternary WCxNy thin films on Si (1 0 0) substrates at 500 °C using direct current (DC) reactive magnetron sputtering in a mixture of CH4/N2/Ar discharge, and explore the effects of substrate bias (Vb) on the intrinsic stress, preferred orientation and phase transition for the obtained films by virtue of X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and selective area electron diffraction (SAED). We find that with increasing the absolute value of Vb up to 200 V the carbon (x) and nitrogen (y) atom concentrations of WCxNy films keep almost constant with the values of 0.75 and 0.25, respectively. The XPS and SAED results, combined with the density-functional theory (DFT) calculations on the electronic structure of WC0.75N0.25, show our obtained WCxNy films are single-phase of carbonitrides. Furthermore, we find that the compressive stress sharply increases with increasing the absolute value of Vb, which leads to a pronounced change in the preferred orientation and phase structure for the film, in which a phase transition from cubic β-WCxNy to hexagonal α-WCxNy occurs as Vb is in the range of −40 to −120 V. In order to reveal the relationship between the stress and phase transition as well as preferred orientation, the DFT calculations are used to obtain the elastic constants for β-WCxNy and α-WCxNy. The calculated results show that the preferred orientation is dependent on the competition between strain energy and surface energy, and the phase transition can be attributed to a decrease in the strain energy.  相似文献   

3.
Series of CoxCr1−x thin films have been evaporated under vacuum onto Si(1 0 0) and glass substrates. Thickness ranges from 17 to 220 nm, and x from 0.80 to 0.88. Alternating gradient field magnetometer (AGFM) measurements provided saturation magnetization values ranging from 220 to 1200 emu/cm3. Values of squareness exceeding 0.8 have been measured. Coercive field may reach values up to 700 Oe, depending on the percentage of chromium, as well as the substrate nature and the direction of the applied magnetic field. The saturation magnetization value decreases as the Cr content increases. In order to study their dynamical magnetic properties, Brillouin Light Scattering (BLS) measurements have been performed on these samples. Stiffness constant value and anisotropy magnetic field were adjusted to fit the experimental BLS spectra. These results are analyzed and correlated.  相似文献   

4.
SrBi2−xPrxNb2O9 (x=0, 0.04 and 0.2) ceramics were prepared by a solid state reaction method. X-ray diffraction analysis indicated that single-phase layered perovskite structure ferroelectrics were obtained. A relaxor behavior of frequency dispersion was observed among Pr-doped SrBi2Nb2O9. The degree of frequency dispersion ΔT increased from 0 for x=0-7 °C for x=0.2, and the extent of relaxor behavior γ increased from 0.94 for x=0-1.45 for x=0.2. The substitution of Pr ions for Bi3+ ions in the Bi2O2 layers resulted in a shift of the Curie point to lower temperatures and a decrease in remanent polarization. In addition, the coercive field 2Ec reduced from 110 kV/cm for an undoped specimen to 90 kV/cm for x=0.2.  相似文献   

5.
ZnO nanorod arrays were synthesized by chemical-liquid deposition techniques on MgxZn1−xO (x = 0, 0.07 and 0.15) buffer layers. It is found that varying the Mg concentration could control the diameter, vertical alignment, crystallization, and density of the ZnO nanorods. The X-ray diffraction (XRD), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) data show the ZnO nanorods prefer to grow in the (0 0 2) c-axis direction better with a larger Mg concentration. The photoluminescence (PL) spectra of ZnO nanorods exhibit that the ultraviolet (UV) emission becomes stronger and the defect emission becomes weaker by increasing the Mg concentration in MgxZn1−xO buffer layers.  相似文献   

6.
Ultrafine Ce1−xNdxO2−δ (x=0-0.25) powders were synthesized by self-propagating room temperature synthesis. Raman spectra were measured at room temperature in the 300-700 cm−1 spectral range. The shift and asymmetric broadening of the Raman F2g mode at about 454 cm−1 in pure and doped ceria samples could be explained with combined size and inhomogenous strain effects. Increased concentration of O2− vacancies with doping is followed by an appearance of new Raman feature at about 545 cm−1.  相似文献   

7.
Theoretical investigations of the conduction band offset (CBO) and valence band offset (VBO) of the relaxed and pseudo-morphically strained GaAs1−xNx/GaAs1−yNy heterointerfaces at various nitrogen concentrations (x and y) within the range 0-0.05 and along the [0 0 1] direction are performed by means of the model-solid theory combined with the empirical pseudopotential method under the virtual crystal approximation that takes into account the effects of the compositional disorder. It has been found that for y < x, the CBO and VBO have negative and positive signs, respectively, whereas the reverse is seen when y > x. The band gap of the GaAs1−xNx over layer falls completely inside the band gap of the substrate GaAs1−yNy and thus the alignment is of type I (straddling) for y < x. When y > x, the alignment remains of type I but in this case it is the band gap of the substrate GaAs1−yNy which is fully inside the band gap of the GaAs1−xNx over layer. Besides the CBO, the VBO and the relaxed/strained band gap of two particular cases: GaAs1−xNx/GaAs and GaAs1−xNx/GaAs0.98N0.02 heterointerfaces have been determined.  相似文献   

8.
Magnetoresistance (MR) and magnetization (dc and ac) measurements have been carried out on the manganites, (La0.7−2xEux)(Ca0.3Srx)MnO3 (0.05≤x≤0.15), in the temperature range of 5-320 K. At 5 K, an unusually large MR of almost 98% is observed in the x=0.15 sample, nearly up to fields of 4-5 T. This large high-field MR occurs in the metallic region, far below the insulator-metal transition temperature, and does not vary linearly with applied field. The unusual magnetoresistance is explained in the light of various possibilities such as phase segregation, cluster spin-glass behavior, etc.  相似文献   

9.
Hydrogenated amorphous SiC films (a-Si1−xCx:H) were prepared by dc magnetron sputtering technique on p-type Si(1 0 0) and corning 9075 substrates at low temperature, by using 32 sprigs of silicon carbide (6H-SiC). The deposited a-Si1−xCx:H film was realized under a mixture of argon and hydrogen gases. The a-Si1−xCx:H films have been investigated by scanning electronic microscopy equipped with an EDS system (SEM-EDS), X-ray diffraction (XRD), secondary ions mass spectrometry (SIMS), Fourier transform infrared spectroscopy (FTIR), UV-vis-IR spectrophotometry, and photoluminescence (PL). XRD results showed that the deposited film was amorphous with a structure as a-Si0.80C0.20:H corresponding to 20 at.% carbon. The photoluminescence response of the samples was observed in the visible range at room temperature with two peaks centred at 463 nm (2.68 eV) and 542 nm (2.29 eV). In addition, the dependence of photoluminescence behaviour on film thickness for a certain carbon composition in hydrogenated amorphous SiC films (a-Si1−xCx:H) has been investigated.  相似文献   

10.
We experimentally investigate the role of geometry on the current and current density dependencies of the intrinsic electroresistance of Sm1−xSrxMnO3 of two compositions (x=0.40 and x=0.45). It is found that for each composition, the plot of the intrinsic electroresistance versus current density for samples with different dimensions and resistances coincide whereas this does not happen in the case of the electroresistance versus the magnitude of the current. These results confirm that the current density is indeed the relevant “universal” parameter for controlling the intrinsic electroresistance of these manganites.  相似文献   

11.
Mixed thin films of (CdO)1−x(PbO)x and (CdS)1−x(PbS)x (x=0.25) were prepared on glass substrates by spray pyrolysis technique for various substrate temperatures 300, 320 and 340 °C. Structural and optical properties were studied. XRD studies reveal the formation of mixed films. The substrate temperature of 340 °C seems to be critical for the formation of CdO-PbO mixed films. It is observed that (CdS)1−x(PbS)x mixed films were formed at all the three substrate temperatures. The direct band gap value of (CdO)1−x(PbO)x and (CdS)1−x(PbS)x mixed films is about 2.6 and 2.37 eV, respectively.  相似文献   

12.
Structural, electronic and optical properties as well as structural phase transitions of ternary alloy CdxZn1 − xS have been investigated using the first-principles calculations based on the density functional theory. We found that the crystal structure of CdxZn1 − xS alloys transforms from wurtzite to zinc blende as Cd content of x=0.83x=0.83. Effect of Cd content on electronic structures of CdxZn1 − xS alloys has been studied. The bandgaps of CdxZn1 − xS alloys with wurtzite and zinc blende structures decrease with the increase of Cd content. Furthermore, dielectric constant and absorption coefficient also have been discussed in detail.  相似文献   

13.
Preparation of LaNi1 − xFexO3, which is one of the candidate materials of solid oxide fuel cell cathode, current collecting layer and interconnect coating was examined with Pechini method and solid state reaction method. Single phase LaNi1 − xFexO3 with large Ni content has successfully been prepared by low temperature sintering as 750 °C with Pechini method, whereas large amount of raw materials has remained with solid state reaction method by sintering at the same temperature. It can be ascribed to more homogenous cation distribution in raw powder material prior to sintering with Pechini method. It has also been revealed that LaNi1 − xFexO3 with x lower than 0.3 is thermodynamically unstable in air above 1000 °C. LaNi0.6Fe0.4O3 showed superior property as cathode material with high electrical conductivity, thermodynamic stability and appropriate sintering property.  相似文献   

14.
K. Ma 《Applied Surface Science》2005,252(5):1679-1684
The effect of Ni interlayer on stress level of cobalt silicides was investigated. The X-ray diffraction patterns (XRD) show that low temperature formation of Co1−xNixSi2 solid solution was obtained while Ni interlayer was present in Co/Si system, which was confirmed by Auger electron spectrum (AES) and sheet resistance measurement. XRD was also used to measure the internal stress in CoSi2 films by a 2θψ − sin2ψ method. The result shows that the tensile stress in CoSi2 films evidently decreased in Co/Ni/Si(1 0 0) system. The reduction of lattice mismatch, due to the presence of Ni in CoxNi1−xSi2 solid solution, is proposed to explain this phenomenon.  相似文献   

15.
Two alloys of the Co-Ge system were produced by mechanical alloying starting from the elemental powders in the compositions Co20Ge80 and Co40Ge60. The crystalline structures of the CoxGe100−x (x=20, 40) alloys obtained were investigated using the X-ray diffraction (XRD) technique. The measured XRD patterns showed the presence of the peaks corresponding to the crystalline m-CoGe phase and also to the high pressure and temperature phase c-CoGe in the as-milled sample for Co20Ge80, although it was milled at room temperature and pressure. For Co40Ge60, the crystalline Co3Ge2 phase was obtained, and structural data for all phases were determined by means of a Rietveld refinement procedure. The thermal stability of the phases was investigated performing a heat treatment of the alloys at 450 °C for 6 h and, after that, new XRD measurements were collected and were also studied using a Rietveld refinement procedure. The m-CoGe and Co3Ge2 phases seem to be very stable, but the relative amount of c-CoGe decreases a little, indicating a less stable phase, which can be explained by the fact that it is produced usually under extreme conditions.  相似文献   

16.
The Shubnikov-de Haas (S-dH) results at 1.5 K for AlxGa1−xN/AlN/GaN heterostructures and the fast Fourier transformation data for the S-dH data indicated the occupation by a two-dimensional electron gas (2DEG) of one subband in the GaN active layer. Photoluminescence (PL) spectra showed a broad PL emission about 30 meV below the GaN exciton emission peak at 3.474 eV that could be attributed to recombination between the 2DEG occupying in the AlN/GaN heterointerface and photoexcited holes. A possible subband structure was calculated by a self-consistent method taking into account the spontaneous and piezoelectric polarizations, and one subband was occupied by 2DEG below the Fermi level, which was in reasonable agreement with the S-dH results. These results can help improve understanding of magnetotransport, optical, and electronic subband properties in AlxGa1−xAs/AlN/GaN heterostructures.  相似文献   

17.
The doping dependence of the Raman spectra of high quality La2−xSrxCu16,18O4 polycrystalline compounds has been investigated at low temperatures. It is shown that symmetry forbidden bands peaked at ∼150 cm−1, ∼280 cm−1, and ∼370 cm−1 are activated in the (xx/yy) polarization Raman spectra due to the local breaking of the inversion symmetry mainly at low temperatures and for doping concentrations for which the compound is superconducting. The apparent A1-character of the activated modes in the symmetry reduced phase indicates a reduction from the D2h to C2v or D2 crystal symmetries, which associates the observed modes to specific IR-active phonons with eigenvectors mainly along the c-axis. The temperature and doping dependence of this inversion symmetry breaking and the superconducting transition temperature are very similar, though the symmetry reduction occurs at significantly higher temperatures.  相似文献   

18.
The effect of bromine methanol (BM) etching and NH4F/H2O2 passivation on the Schottky barrier height between Au contact and semi-insulated (SI) p-Cd1−xZnxTe (x ≈ 0.09-0.18) was studied through current-voltage (I-V) and capacitance-voltage (C-V) measurements. Near-infrared (NIR) spectroscopy technique was utilized to determine the Zn concentration. X-ray photoelectron spectroscopy (XPS) for surface composition analysis showed that BM etched sample surface left a Te0-rich layer, however, which was oxidized to TeO2 and the surface [Te]/([Cd] + [Zn]) ratio restored near-stoichiometry after NH4F/H2O2 passivation. According to I-V measurement, barrier height was 0.80 ± 0.02-0.85 ± 0.02 eV for Au/p-Cd1−xZnxTe with BM etching, however, it increased to 0.89 ± 0.02-0.93 ± 0.02 eV with NH4F/H2O2 passivation. Correspondingly, it was about 1.34 ± 0.02-1.43 ± 0.02 eV and 1.41 ± 0.02-1.51 ± 0.02 eV by C-V method.  相似文献   

19.
The electrical properties and phase transition behavior of (Pb0.87La0.02Ba0.1)(Zr0.6Sn0.4−xTix)O3 solid solutions (PLBZST, 0.04≤x0.2) were investigated by the X-ray diffraction, permittivity, pyroelectric current, and P-E electric hysterisis loops. As the composition x increased from 0.04 to 0.2, the antiferroelectric ceramics (x≤0.07, AFE) with tetragonal phase changed to the ferroelectric relaxors (RFE, 0.09≤x). AFE ceramics showed a peculiar diffuse phase transition and dielectric relaxation at the low temperature (down to −100 °C) due to a frustration between AFE and FE state. With an increase in composition x, electrically field-induced AFE-FE switching field (EAFE-FE) and AFE-paraelectric (PE) phase transition temperature (Tc) are depressed in the temperature (T)-Ti composition (x) phase diagram, a FE-AFE-PE triple phase point (Ttr) with the lowest transition temperature occurred at x=0.09. The pyroelectric currents under an application of various external electric field (E) were measured to identify a T-E phase diagram of the PLBZST compound.  相似文献   

20.
We have investigated the temperature and composition dependent photoluminescence (PL) spectra in Ga1−xMnxN layers (where x ≈ 0.1-0.8%) grown on sapphire (0 0 0 1) substrates using the plasma-enhanced molecular beam epitaxy technique. The efficient PL is peaked in the red (1.86 eV), yellow (2.34 eV), and blue (3.29 eV) spectral range. The band-gap energy of the Ga1−xMnxN layers decreased with increasing temperature and manganese composition. The band-gap energy of the Ga1−xMnxN layers was modeled by the Varshni equation and the parameters were determined to be α = 2.3 × 10−4, 2.7 × 10−4, 3.4 × 10−4 eV/K and β = 210, 210, and 230 K for the manganese composition x = 0.1%, 0.2%, and 0.8%, respectively. As the Mn concentration in the Ga1−xMnxN layers increased, the temperature dependence of the band-gap energy was clearly reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号