首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The structure of SiOx (x = 1.94) films has been investigated using both X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS). The SiOx films were deposited by vacuum evaporation. XPS spectra show that SiO1.94 films are composed of silicon suboxides and the SiO2 matrix. Silicon clusters appeared only negligibly in the films in the XPS spectra. Si3O+ ion species were found in the TOF-SIMS spectra with strong intensity. These results reveal the structure of the films to be silicon monoxide embedded in SiO2, and this structure most likely exists as a predominant form of Si3O4. The existence of Si-Si structures in the SiO2 matrix will give rise to dense parts in loose glass networks.  相似文献   

2.
Intensities of positive and negative ion species emitted from thermally oxidized and plasma-enhanced chemical vapor deposited (PECVD) SiO2 films were analyzed using time-of-flight secondary ion mass spectrometry (TOF-SIMS) and the Saha-Boltzmann equation. Intensities of positive and negative secondary ion species were normalized to those of 28Si+ and 28Si ions, respectively, and an effective temperature of approximately (7.2 ± 0.1) × 103 K of the sputtered region bombarded with pulsed 22 kV Au3+ primary ions was determined. Intensity spectra showed polarity dependence on both n and m values of SinOm fragments, and a slight shift to negative polarity for PECVD SiO2 compared to thermally oxidized SiO2 films. By dividing the intensity ratios of negative-to-positive ions for PECVD SiO2 by those for thermally oxidized SiO2 films to cancel statistical factors, the difference in absolute electronegativity (half the sum of ionization potential and electron affinity of fragments) between both films was obtained. An increase in electronegativity for SiOm (m = 1, 2) and Si2Om (m = 1-4) fragments for PECVD SiO2 films compared to thermally oxidized films was obtained to be 0.1-0.2 Pauling units, indicating a more covalent nature of Si-O bonds for PECVD SiO2 films compared to the thermally oxidized SiO2 films.  相似文献   

3.
Secondary ion species from plasma-enhanced chemical vapor deposited (PECVD) SiO2 films have been investigated using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Comparative studies of PECVD SiO2 films prepared using a mixture of SiH4/N2O reaction gas at 400 °C with thermally oxidized SiO2 films grown at 900 °C were carried out in the mid-range mass spectra from 95 to 165 amu. Small amounts of ion species containing nitrogen atoms, including Si2O2N+, Si3O2N+and Si3O3N+, were detected in the SiO2 bulk from the PECVD SiO2 films. Furthermore, large amounts of Si3O2N+ and Si2O3N were found at the interface between silicon and the SiO2 films. Depth analysis showed that the intensity peak shapes of these ion species containing nitrogen atoms at the interface were closely coincident with those of Si3O3+ corrected by subtracting the influence of the SiO2 matrix. The variation in the spectra of these ion species clearly indicates that two types of structures of oxynitride exist for the PECVD SiO2 films in the SiO2 bulk films and at the interface. These are likely produced by the reaction of reactive gas with SiO2 and silicon surfaces where dangling bonds of silicon may exist in the different form.  相似文献   

4.
A new transparent conducting oxide (TCO) film with low resistivity and high transmittance in the visible range, molybdenum-doped zinc oxide (MZO), was successfully prepared by RF magnetron sputtering method on glass substrates at room temperature. The structural, electrical, and optical properties as a function of film thickness were investigated. All the samples have a preferred orientation with the (0 0 2) planes parallel to the substrates. The resistivity initially decreases and then shows an increase with the increase of the film thickness. When the thickness is 400 nm, the film has its best crystallinity and lowest resistivity 9.2 × 10−4 Ω cm with a Hall mobility of 30 cm2 V−1 s−1 and a carrier concentration of 2.3 × 1020 cm−3. The average transmittance in the visible range exceeds 84% for all thickness films.  相似文献   

5.
In this work, we developed the multifractality and its formalism to investigate the surface topographies of ITO thin films prepared by electron beam deposition method for various annealing temperatures from their atomic force microscopy (AFM) images. Multifractal analysis shows that the spectrum width, Δαα = αmax − αmin), of the multifractal spectra, f(α), can be used to characterize the surface roughness of the ITO films quantitatively. Also, it is found that the f(α) shapes of the as-deposited and annealed films remained left hooked (that is Δf = f(αmin) − f(αmax) > 0), and falls within the range 0.149-0.677 depending upon the annealing temperatures.  相似文献   

6.
This paper reports the characterization of both barrier type and porous type anodic oxide films on aluminium by means of spectroscopic ellipsometry (SE). In order to show the capabilities of the technique for quantitative determination of the layer characteristics, results based on ellipsometric data are correlated with complementary information from the analytical techniques transmission electron microscopy (TEM) and Auger electron spectroscopy (AES). It is concluded that ellipsometry yields an accurate characterization for the thicknesses and the interfacial properties of both the barrier layer and the porous layer. The porosity of the porous layer, determined with SE, is found to be in good agreement with the results obtained from TEM.  相似文献   

7.
Spinel CoMnFeO4 thin films are stable materials useful to study the influence of radio-frequency (RF) sputtering experimental conditions on the microstructure of oxide films. It has been demonstrated by various techniques such as electronic and atomic force microscopy (AFM), gas adsorption techniques and ellipsometry, that films prepared with 0.5 Pa sputtering argon pressure and 5 cm target-substrate distance are very dense. On the other hand, the samples obtained under higher pressure and/or longer distances are microporous with a mean pore size generally lower than 2 nm. The specific surface areas of such films reach about 75 m2/g.According to the simple model proposed, the films are made of three layers. From the bottom to the top of the film, the first one at the interface with the substrate is 100% dense. The second layer is made of cylindrical rods set up according to a compact plane. Its porosity is due to the lattice interstices. Hemispheric domes covering each rod make up the third layer, which displays a degree of roughness related to the shape and the hexagonal arrangement of the domes. The surface enhancement factor (SEF), the porosity and roughness, calculated from the model, are in corroboration with the experimental values. The porosity factor is however slightly underestimated by the model for very porous samples.  相似文献   

8.
Erbium fluoride (ErF3) films were thermally deposited on Ge(1 1 1), Si(0 0 1) and copper mesh grid with different substrate temperature. X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the structure and morphology of the films. The structure of ErF3 films deposited on germanium and silicon changed from amorphous to crystalline with increasing the substrate temperature, while the crystallization temperature of the films on silicon is higher than that of on germanium. The infrared optical properties of the films change greatly with the evolution of crystal structure. It is also found that the morphology of ErF3 film on Ge(1 1 1) at 200 °C is modulated by the stress between the substrate and film. The SEM and TEM results confirmed that the ErF3 films on copper mesh grid were crystalline even at 100 °C. Interestingly, the ErF3 films show flower-like surface morphology when deposited on copper mesh at 200 °C. The crystallization temperature (Tc) of ErF3 films on the three substrates has the relation which is which is induced by the wetting angle of ErF3 films on different substrates.  相似文献   

9.
The thickness evolution of multilayer film is investigated by focused ion beam (FIB) in the domain of polymer multilayers. This method, currently used in the modification and the characterization of integrated circuits, proves it is possible to determine the polymer film thickness. Sample cutting and its observation of the cross-section are performed in the FIB without leaving the vacuum chamber. Two main conclusions can be drawn: (1) the roughness of the film increases with the number of layer deposit, (2) the film growth changes from nonlinear (called exponential) to linear beyond 300 nm (70 layers).  相似文献   

10.
Silsesquioxane, with an empirical formula of RSiO3/2, has the potential to combine the mechanical properties of plastics with the oxidative stability of ceramics in one material [D.W. Scott, J. Am. Chem. Soc. 68 (1946) 356; K.J. Shea, D.A. Loy, Acc. Chem. Res. 34 (2001) 707; K.-M. Kim, D.-K. Keum, Y. Chujo, Macromolecules 36 (2003) 867; M.J. Abad, L. Barral, D.P. Fasce, R.J.J. William, Macromolecules 36 (2003) 3128]. The high sensitivity, surface specificity, and ability to detect and image high mass additives make time-of-flight secondary ion mass spectrometry (ToF-SIMS) a powerful surface analytical instrument for the characterization of polymer composite surfaces in an analytical laboratory [J.C. Vickerman, D. Briggs (Eds.), ToF-SIMS Surface Analysis by Mass Spectrometry, Surface Spectra/IMPublications, UK, 2001; X. Vanden Eynde, P. Bertand, Surf. Interface Anal. 27 (1999) 157; P.M. Thompson, Anal. Chem. 63 (1991) 2447; S.J. Simko, S.R. Bryan, D.P. Griffis, R.W. Murray, R.W. Linton, Anal. Chem. 57 (1985) 1198; S. Affrossman, S.A. O’Neill, M. Stamm, Macromolecules 31 (1998) 6280]. In this paper, we compare ToF-SIMS spectra of control samples with spectra generated from polymer nano-composites based on octabenzyl-polyhedral oligomeric silsesquioxane (BnPOSS) as well as spectra (and images) generated from multivariate statistical analysis (MVSA) of the entire spectral image. We will demonstrate that ToF-SIMS is able to detect and image low concentrations of BnPOSS in polycarbonate. We emphasize the use of MVSA tools for converting the massive amount of data contained in a ToF-SIMS spectral image into a smaller number of useful chemical components (spectra and images) that fully describe the ToF-SIMS measurement.  相似文献   

11.
The surface modifications of tungsten massive samples (0.5 mm foils) made by nitrogen ion implantation are studied by SEM, XRD, AFM, and SIMS. Nitrogen ions in the energy range of 16-30 keV with a fluence of 1 × 1018 N+ cm−2 were implanted in tungsten samples for 1600 s at different temperatures. XRD patterns clearly showed WN2 (0 1 8) (rhombohedral) very close to W (2 0 0) line. Crystallite sizes (coherently diffracting domains) obtained from WN2 (0 1 8) line, showed an increase with substrate temperature. AFM images showed the formation of grains on W samples, which grew in size with temperature. Similar morphological changes to that has been observed for thin films by increasing substrate temperature (i.e., structure zone model (SZM)), is obtained. The surface roughness variation with temperature generally showed a decrease with increasing temperature. The density of implanted nitrogen ions and the depth of nitrogen ion implantation in W studied by SIMS showed a minimum for N+ density as well as a minimum for penetration depth of N+ ions in W at certain temperatures, which are both consistent with XRD results (i.e., IW (2 0 0)/IW (2 1 1)) for W (bcc). Hence, showing a correlation between XRD and SIMS results.  相似文献   

12.
The surface modifications of tungsten massive samples (0.5 mm foils) made by nitrogen ion (30 keV; 1 × 1018 N+ cm−2) implantation are studied by XRD, AFM, and SIMS. XRD patterns clearly showed WN2 (0 1 8) (rhombohedral) very close to W (2 0 0) line. Crystallite sizes obtained from WN2 (0 1 8) line, showed an increase with substrate temperature. AFM images showed the formation of grains on W samples, which grew in size with temperature. These morphological changes are similar to those observed for thin films by increasing substrate temperature (i.e. structure zone model (SZM)). Surface roughness variation with temperature, showed a decrease with increasing temperature. The density of implanted nitrogen ions, and the depth of nitrogen ion implantation in W are studied by SIMS. The results show a minimum for N+ density at a certain temperature consistent with XRD results (i.e. IW (2 0 0)/IW (2 1 1)). This minimum in XRD results is again similar to that obtained for different thin films by Savaloni et al. [Physica B, 349 (2004) 44; Vacuum, 77 (2005) 245] and Shi and Player [Vacuum, 49 (1998) 257].  相似文献   

13.
In order to qualitatively and quantitatively analyze the structural defects including the defect types and their concentrations in oxide heteroepitaxial films, a new X-ray rocking-curve width-fitting method was used in the case of doubleCeO2/YSZ/Si (YSZ=yttria-stabilized ZrO2) films that were prepared by pulsed laser deposition. Two main defect types, angular rotation and oriented curvature, were found in both CeO2 and YSZ. Dislocation densities of CeO2 and YSZ, which were obtained from the angular rotations, are functions of the YSZ thickness. A distinct two-step correlation between dislocation densities of CeO2 and YSZ was found that as the dislocation density of YSZ is higher than 2.4×1011 cm-2, the dislocation density of CeO2 shows a high sensitivity with that of YSZ compared with the low relativity in lower dislocation density (<2.4×1011 cm-2). In addition, YSZ always has higher dislocation densities and oriented curvatures than CeO2 in each specimen, which can be attributed to the smaller mosaic domain sizes in YSZ than in CeO2 as observed by high-resolution transmission electron microscopy. Received: 12 August 2002 / Accepted: 14 August 2002 / Published online: 4 December 2002 RID="*" ID="*"Corresponding author. Fax: +81-3/5734-3369, E-mail: chun_hua_chen@hotmail.com  相似文献   

14.
Epitaxial scandium nitride films (225 nm thick) were grown on (1 1 1)-oriented silicon substrates by molecular beam epitaxy (MBE), using ammonia as a reactive nitrogen source. Film microstructure was investigated using X-ray diffraction (XRD). The (1 1 1) ω-scan FWHM of 0.551° obtained for films grown at 850 °C is the lowest reported so far for ScN thin films. The principal orientation of ScN with respect to Si is (1 1 1)ScN//(1 1 1)Si and []ScN//[]Si, representing a 60° in-plane rotation of the ScN layer with respect to the Si substrate. However, some twinning is also present in the films; the orientation of the twinned component is (1 1 1)ScN//(1 1 1)Si and []ScN//[]Si, representing a ‘cube-on-cube’ orientation. The volume percentage of these twins in the films decreases with increasing film growth temperature.  相似文献   

15.
16.
CrN films with strong adhesion with the substrate have been fabricated on Ti6Al4V alloy using novel plasma immersion ion implantation and deposition (PIII&D) based on high power pulsed magnetron sputtering (HPPMS). A macro-particle free chromium plasma is generated by HPPMS while the samples are subjected to high voltage pulses to conduct PIII&D. The CrN coatings have a dense columnar structure and low surface roughness. The grains in the films have the face-center cubic (fcc) structure with the (2 0 0) preferred orientation. An excellent adhesion is achieved with a critical load up to 74.7 N. An implantation voltage of 18 kV yields a hardness of 18 GPa and better wear resistance and a low friction coefficient of 0.48 are achieved.  相似文献   

17.
This paper focuses on the development of mixed metal oxide thin films and physical characterization of the films. The films were produced by co-evaporation of titanium oxide and tungsten oxide powders. This allowed the development of titanium oxide-tungsten oxide films as analyzed using XPS. Examination in the SEM and AFM showed that the films were nanoporous with the pore size and pore orientation varying as a function of the deposition angle. UV-vis spectra of the films show an increase of transmittance with increasing deposition angle which is attributed to the structure and porosity of the films. Raman analysis indicated that the as-deposited films have broad and weak Raman characteristics, attributed to the nanocrystal nature of the films and the presence of defects, and the peak broadening deceases after annealing the film, as expected.  相似文献   

18.
Received: 18 November 1997 / Accepted: 16 October 1998 / Published online: 24 February 1999  相似文献   

19.
Undoped ZnO and Zn0.9Cr0.1O films were prepared on Al2O3 (0 0 0 1) substrates using the magnetron co-sputtering technique. X-ray diffraction scans show that all films exhibit nearly single-phase wurtzite structure with c-axis orientation. Both chromium doping and growth ambient have a significant impact on the lattice constants and nucleation processes in ZnO film. A large quantity of subgrains (10 nm in size) has been observed on Zn0.9Cr0.1O film grown under Ar + O2, while irregular plateau-like grains 40-50 nm in size were observed on Zn0.9Cr0.1O film grown under Ar + N2. The ultraviolet-visible transmittance and optical bandgap of all films were also examined. The photoluminescence spectra of all films exhibit a broad emission located around 400 nm, which is composed of one weak ultraviolet luminescence and another rather intense near-violet one, as determined by Gaussian peak fitting. The near-violet emission centered on 400 nm might originate from the electron transition between the band tail state levels of surface defects and/or lattice imperfection in the ZnO film.  相似文献   

20.
At 300 K, an amorphous Al-oxide film is formed on NiAl(001) upon oxygen adsorption. Annealing of the oxygen-saturated NiAl(001) surface to 1200 K leads to the formation of thin well-ordered θ-Al2O3 films. At 300 K, and low-exposure oxygen atoms are chemisorbed on CoGa(001) on defects and on step edges of the terraces. For higher exposure up to saturation, the adsorption of oxygen leads to the formation of an amorphous Ga-oxide film. The EEL spectrum of the amorphous film exhibits two losses at ≈400 and 690 cm-1. After annealing the amorphous Ga-oxide films to 550 K thin, well-ordered β-Ga2O3 films are formed on top of the CoGa(001) surface. The EEL spectrum of the β-Ga2O3 films show strong Fuchs-Kliewer (FK) modes at 305, 455, 645, and 785 cm-1. The β-Ga2O3 films are well ordered and show (2×1) LEED pattern with two domains, oriented perpendicular to each other. The STM study confirms the two domains structure and allows the determination of the two-dimensional lattice parameters of β-Ga2O3. The vibrational properties and the structure of β-Ga2O3 on CoGa(001) and θ-Al2O3 on NiAl(001) are very similar. Ammonia adsorption at 80 K on NiAl(111) and NiAl(001) and subsequent thermal decomposition at elevated temperatures leads to the formation of AlN. Well-ordered and homogeneous AlN thin films can be prepared by several cycles of ammonia adsorption and annealing to 1250 K. The films render a distinct LEED pattern with hexagonal [AlN/NiAl(111)] or pseudo-twelve-fold [AlN/NiAl(001)] symmetry. The lattice constant of the grown AlN film is determined to be aAlN= 3.11 Å. EEL spectra of AlN films show a FK phonon at 865 cm-1. The electronic gap is determined to be Eg= 6.1±0.2 eV. GaN films are prepared by using the same procedure on the (001) and (111) surfaces of CoGa. The films are characterized by a FK phonon at 695 cm-1 and an electronic band gap Eg= 3.5±0.2 eV. NO adsorption at 75 K on NiAl(001) and subsequent annealing to 1200 K leads to the formation of aluminium oxynitride (AlON). An oxygen to nitrogen atomic ratio of ≈2:1 was estimated from the analysis of AES spectra. The AlON films shows a distinct (2×1) LEED pattern and the EEL spectrum exhibits characteristic Fuchs-Kliewer modes. The energy gap is determined to be Eg= 6.6±0.2 eV. The structure of the AlON film is derived from that of θ-Al2O3 formed on NiAl(001). Received: 21 March 1997/Accepted: 12 August 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号