首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxide coatings were produced on AM60B magnesium alloy substrate making use of microarc oxidation (MAO) technique. The effect of KF addition in the Na2SiO3-KOH electrolytic solution on the microarc oxidation process and the structure, composition, and properties of the oxide coatings was investigated. It was found that the addition of KF into the Na2SiO3-KOH electrolytic solution caused increase in the electrolyte conductivity and decrease in the work voltage and final voltage in the MAO process. Subsequently, the pore diameter and surface roughness of the microarc oxidation coating were decreased by the addition of KF, while the coating compactness was increased. At the same time, the phase compositions of the coatings also varied after the addition of KF in the electrolytic solution, owing to the participation of KF in the reaction and its incorporation into the oxide coating. Moreover, the coating formed in the electrolytic solution with KF had a higher surface hardness and better wear-resistance than that formed in the solution without KF, which was attributed to the changes in the spark discharge characteristics and the compositions and structures of the oxide coatings after the addition of KF.  相似文献   

2.
The coatings mainly composed of nanostructured TiO2 were deposited on Ti6Al4V alloy by microarc oxidation (MAO). The duplex coatings of microarc oxidation combined with spraying graphite process were fabricated for the antifriction purpose. The tribological properties of unpolished, polished and duplex coating against steel under dry friction conditions were examined. It is found that antifriction property of the polished microarc oxidation coating is superior to that of the unpolished one. The improvement is attributed to the low surface roughness and the nanocrystalline structure of coatings. The duplex coating exhibits best antifriction property, registering a lower and steady friction coefficient of ≈0.12 than that of the polished microarc oxidation coating sliding in the similar condition. The good tribological property is attributed to the specially designed duplex structure, the coating adhering strongly to the substrate and serving as the load-supporting underlayer and the graphite layer on top of it working as solid lubricant.  相似文献   

3.
Black and gray microarc oxidation (MAO) coatings were prepared in a phosphate electrolyte with and without K2TiF6 on 2A70 aluminum alloy, respectively. Voltage–time curves were recorded during the MAO process. The effects of K2TiF6 on the morphology, composition, abrasive resistance and corrosion resistance of MAO coatings were investigated. The results showed that the MAO coating produced in the electrolyte with K2TiF6 was thicker, and more uniform than that produced in the electrolyte without K2TiF6. Ti was detected in the surface of the MAO coating formed in the electrolyte with K2TiF6. The results of abrasive resistance and corrosion resistance showed that the MAO coating formed in the electrolyte with K2TiF6 exhibited better abrasive resistance and corrosion resistance.  相似文献   

4.
Ceramic coatings containing TiO2 were formed on Ti6Al2Zr1Mo1V alloy surface by microarc oxidation (MAO) method. The microstructure, phase and chemical composition of the coatings were analyzed by SEM, XRD and EDS techniques. The coating mainly consists of rutile TiO2 and a small amount of anatase TiO2. The infrared emissivity values of coated and uncoated titanium samples when exposed to 700 °C were tested. It was found that the coating exhibits a higher infrared emissivity value (about 0.9) in the wavelength range of 8–14 μm than that of the uncoated titanium alloy, although which shows a slight increase from 0.1 to 0.3 with increasing exposure time at 700 °C. The relatively high infrared emissivity value of the MAO coating is possibly attributed to the photon emission from the as formed TiO2 phase.  相似文献   

5.
Micro-arc oxidation (MAO) is an effective approach to improve the properties of aluminum and its alloy by forming ceramic films on the surface. However, the oxide layers often have a porous surface structure, which exhibits relatively high friction coefficients. In this work, in order to enhance the surface and mechanical properties of the films produced by micro-arc oxidation, Al2O3 coatings embedded with Fe micrograins of different thicknesses were produced on aluminum alloys by adding Fe micrograins into the electrolyte during MAO. Compared to the Al2O3 coatings without Fe micrograins, the MAO Al2O3 coatings with Fe micrograins are much denser and harder, and the wear resistance is also improved significantly. The enhancement can be attributed to the enhancement of the surface structure and morphology of the MAO Al2O3 coatings with embedded Fe micrograins.  相似文献   

6.
TiO2-based coating containing amorphous calcium phosphate (CaP) was prepared on titanium alloy by microarc oxidation (MAO). The increase in the EDTA-2Na concentration was unfavorable for the crystallization of TiO2. After heat treatment, the amorphous CaP was crystallized. The thickness of the MAO coatings did not change when heat-treated at 400, 600 and 700 °C; while it increased slightly after heat treatment at 800 °C due to the crystallization of amorphous CaP and growth of TiO2. No apparent discontinuity between the coatings and substrates was observed at various heat-treatment temperatures, indicating the MAO coatings with good interfacial bonding to the substrate. The heat treatment did not alter the chemical composition of the MAO coating and the chemical states of Ti, Ca and P elements. However, it increased the roughness (Ra) of the MAO coating and improved the wetting ability of the MAO coating. In this work, preliminary investigation of the MG63 cell proliferation on the surface of the MAO and heat-treated MAO coatings was conducted. The MAO coating surface with about Ra = 220 nm may be suitable for the MG63 cell adhesion and proliferation. The increased roughness of the heat-treated MAO coatings may result in a decrease in the ability for cell adhesion and proliferation.  相似文献   

7.
电流密度对铝合金微弧氧化膜物理化学特性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
利用微弧氧化(MAO)技术,在LYl2铝合金上沉积了显微硬度达42.14GPa的超硬陶瓷膜.采用x射线衍射仪和显微硬度计研究了阳极电流密度ja和阴极、阳极电流密度比jc/ja对MAO膜相构成和力学特性的影响.此外,利用扫描电子显微镜和恒电位仪分别对膜的微结构和抗点腐蚀特性进行了分析.结果表明,高ja制备的膜主要含α-Al2O3相,低ja制备的膜主要含γ-Al2O3相.显微硬度测试表明,这类膜有较高的硬度,但以ja=15A/dm2和jc/ja=0.7制备的陶瓷膜硬度最高.抗点腐蚀测试表明,jc/ja对陶瓷膜的微结构有很强的影响. 关键词: 微弧氧化 显微硬度 电流密度 抗点腐蚀  相似文献   

8.
Microarc oxidized (MAO) TiO2-based coatings containing Ca and P on titanium alloy were formed in electrolytes containing nano-hydroxyapatite (nano-HA), calcium and phosphate salts. The effects of HA concentration on the thickness, micropore size and number of the MAO coatings were not pronounced. However, the surfaces of the MAO coatings become rough and the crystallinity of anatase increases with increasing HA concentration. In addition, the Ca and P concentrations on the surfaces of the MAO coatings decrease, since the chelate complex of CaY2− (Y = [2(OOC)NCH2CH2N(COO)2]4−) and phosphate ions are hindered to be incorporated into the MAO coatings by HA. In vitro experiments indicate that the apatite-forming abilities of the MAO coatings decrease with increasing HA concentration. Furthermore, with increasing HA concentration, the solubility of Ca and P of the MAO coatings decreases, which could lower the supersaturation of the SBF with respect to apatite near the surfaces of the MAO coatings, further leading to the decreased apatite-forming ability. The results indicate that the HA addition in the electrolytes has an important effect on the structure and in vitro bioactivity of the MAO coatings.  相似文献   

9.
Ni-Co/MoS2 composite coatings were prepared by electrodeposition in a Ni-Co plating bath containing nano-sized MoS2 particles to be co-deposited. The polarization behavior of the composite plating bath was examined on a PAR-273A potentiostat/galvanostat device. The friction and wear behaviors of the Ni-Co/MoS2 composite coatings were evaluated with UMT-2MT test rig in a ball-on-disk contact mode. The morphologies of the original and worn surfaces of the composite coatings were observed on scanning electron microscope (SEM). It was found that the introduction of MoS2 nano-particulates in the electrolyte caused the shift towards larger negatives of the reduction potential of the Ni-Co alloy coating, and the co-deposited MoS2 showed no significant effect on the electrodeposition process of the Ni-Co alloy coating. However, the co-deposited MoS2 led to changes in the surface morphology and structure of the composite coating as well. Namely, the peak width of the Ni-Co solid solution for the composite coating is broader as compared to that of the Ni-Co alloy coating. The co-deposited MoS2 particulates were uniformly distributed in the Ni-Co matrix and contributed to increase tribological properties of the Ni-Co alloy coating.  相似文献   

10.
利用自制多功能微弧氧化电源,在保持双极性电压脉冲幅度不变的条件下,研究了阴极电压脉冲占空比(dc)对钛合金微弧氧化膜特性的影响.结果表明:阴、阳极的峰值电流随处理时间的变化分为几个不同阶段,各阶段的开始和结束时间与dc密切相关.氧化膜主要由金红石和锐钛矿相TiO2组成,金红石相TiO2的相对含量在dc=50%附近随dc关键词: 微弧氧化 钛合金 占空比  相似文献   

11.
The mechanical and corrosion resistance of hydrophilic sphene/titania composite coatings on titanium formed by a hybid technique of microarc oxidation (MAO) and heat-treatment were investigated. The results indicated that the heat-treatment could improve the hardness, elastic modulus, elastic recovery and corrosion resistance of the MAO coatings, and reinforce the interface bonding between MAO coatings and titanium. A cefazolin sodium/chitosan drug film was prepared on the coating surfaces. The drug load procedures such as the addition of chitosan obviously increased the sustained-release ability of drug films. In addition, the increase of cefazolin sodium concentration could increase the accumulative release concentration of cefazolin sodium. The sustaining-release ability of drug films deposited on the MAO and heat-treated MAO coatings is similar. In the interior of drug film, the physical and chemical bonding reactions such as Coulombic interactions, van der Waals force and H-bonding etc. could be produced, through the chemical group interactions such as -OH and -NH2 groups of chitosan with -CO of cefazolin sodium.  相似文献   

12.
Sphene/titania composite coatings were fabricated on titanium by a hybrid technique of microarc oxidation (MAO) and heat treatment. The high-applied voltages promote the formation of sphene in the MAO coatings after heat-treatment. Heat treatment could change the surface morphology of the MAO coatings such as roughness, macropores size and density and the thickness of the MAO coatings. Increasing the heat-treatment temperature decreased the atomic concentration ratios of Ti/Si and Ti/Ca of the MAO coatings. The chemical states of Ti4+, Ca2+, Si2+ and O2− were observed on all the coatings. Additionally, Ti2+ was detected in the MAO and heat-treated MAO coatings at 600 and 700 °C. The heat-treatment has obvious effect on the chemical states of Si, Ti and O elements due to the formation of sphene and oxidation of TiO phase of the MAO coating, but did not affect that of Ca. In the heat-treated MAO coatings at 800 °C (MAO-H8), the titanium surface shows a MAO top layer and oxidized interior layer. A concentration gradient in components in the MAO layer of the MAO-H8 coating was formed.  相似文献   

13.
Magnesium and its alloy currently are considered as the potential biodegradable implant materials, while the accelerated corrosion rate in intro environment leads to implant failure by losing the mechanical integrity before complete restoration. Dense oxide coatings formed in alkaline silicate electrolyte with and without titania sol addition were fabricated on magnesium alloy using microarc oxidation process. The microstructure, composition and degradation behavior in simulated body fluid (SBF) of the coated specimens were evaluated. It reveals that a small amount of TiO2 is introduced into the as-deposited coating mainly composed of MgO and Mg2SiO4 by the addition of titania sol into based alkaline silicate electrolytic bath. With increasing concentration of titania sol from 0 to 10 vol.%, the coating thickness decreases from 22 to 18 μm. Electrochemical tests show that the Ecorr of Mg substrate positively shifted about 300500 mV and icorr lowers more than 100 times after microarc oxidation. However, the TiO2 modified coatings formed in electrolyte containing 5 and 10 vol.% titania sol indicate an increasing worse corrosion resistance compared with that of the unmodified coating, which is possibly attributed to the increasing amorphous components caused by TiO2 involvement. The long term immersing test in SBF is consistent with the electrochemical test, with the coated Mg alloy obviously slowing down the biodegradation rate, meanwhile accompanied by the increasing damage trends in the coatings modified by 5 and 10 vol.% titania sol.  相似文献   

14.
Ceramic coatings of different thickness were fabricated on Ti6Al2Zr1Mo1V alloy by microarc oxidation (MAO), and the effect of the coating on fatigue life was evaluated by 810 Material Test System. The microstructure, phase and chemical composition of the coatings were determined by SEM, XRD and EDS techniques. The coating mainly consists of rutile and a small amount of anatase TiO2. With oxidation time ranging from 10 to 30 min, the coating thickness increases from 13 to 25 μm, while the interface between coating and substrate becomes more zigzag, characterized by increasing overgrowth regions of coating into substrate. Under the same cyclic stress of 750 MPa, the fatigue life decreases from 2.08 × 106 cycles for uncoated specimen to about 3 × 104 cycles for microarc oxidized specimen. Under the cyclic stress, the thicker the coating, the more cracks initiate in the overgrowth regions of coating into substrate near the interface, which are considered as the notch sites of stress concentration to induce the crack initiation, also is the key factor to cause the facture.  相似文献   

15.
Ultra-hard ceramic coatings with microhardness of 2535 Hv have been synthesized on the Al alloy substrate by microarc oxidation (MAO) technique. The effects of anodic current density (ja) and the ratio of cathodic to anodic current density (jc/ja) on the mechanical and corrosion resistance properties of MAO coatings have been studied by microhardness and pitting corrosion tests, respectively. In addition, the phase composition and microstructure of the coatings were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results show that the coatings prepared at high anodic current density consist mainly of α-Al2O3, while those fabricated at low anodic current density are almost composed of γ-Al2O3. Microhardness test shows that the coatings have high microhardness, and the highest one is found in the coating formed at ja = 15 A/dm2 and jc/ja = 0.7. Pitting corrosion test shows that the structure of coatings is strongly influenced by the varying jc/ja.  相似文献   

16.
Ceramic coatings with high emission were fabricated on Ti6Al4V alloy by microarc oxidation (MAO) with additive FeSO4 into the electrolyte. The microstructure, chemical composition and chemical state of the coatings were determined by SEM, XRD, EDS and XPS, respectively. The bonding strength between the coating and substrate was studied by tensile strength test, together with the thermal shock resistance of the coating. The results showed that Fe content in the coating layer significantly affect its thermal emissivity. The relative content of Fe in the coatings surface increased at first and then decreased with increasing the concentration of FeSO4 in electrolytes, so does the emissivity of the coatings. The bonding strength became weaker with increasing the concentration of FeSO4. In addition, the coating remains stable over 40 cycles of thermal shocking. The coating formed at 3 g/L FeSO4 demonstrates the highest an average spectral emissivity value around of 0.87, and bonding strength higher than 33 MPa.  相似文献   

17.
This paper reports on the investigation into the effects of the different anodic ja and cathodic jc current densities on the variations of the anodic and cathodic processes and the associated changes in the characteristics of the coatings synthesized on Ti-6Al-4V alloy substrate by microarc oxidation technique. The coated samples were subjected to coating thickness and cross-section fracture observation. Phase and elemental composition at different depth of the coatings were evaluated through X-ray diffraction and energy dispersive spectrum analyses. The experimental results indicate that the increase of ja leads to the increasing slope of anodic voltage U+ versus oxidation time plots, the larger coating thickness and the more coarse surface morphology of MAO coatings; while the aggrandizement of the cathodic process results in the lower growth rate and more uniform structure of coatings. The changes of the elements distribution from the interface towards the coating surface with variation of ja and jc are affected by the Ti anodic dissolution and the electromigration of electriferous particles, such as Al(OH)4, in electrolytes.  相似文献   

18.
Titanium oxide ceramic coatings were prepared by micro-arc oxidation (MAO) in galvanostatic regime on biomedical NiTi alloy in H3PO4 electrolyte using DC power supply. The surface of the coating exhibited a typical MAO porous and rough structure. The XPS analysis indicated that the coatings were mainly consisted of O, Ti, P, and a little amount of Ni, and the concentration of Ni was greatly reduced compared to that of the NiTi substrate. The TF-XRD analysis revealed that MAO coating was composed of amorphous titanium oxide. The coatings were tightly adhesive to the substrates with the bonding strength more than 45 MPa, which was suitable for medical applications. The curves of potentiodynamic porlarization indicated that the corrosion resistance of NiTi alloy was significantly improved due to titanium oxide formation on NiTi alloy by MAO.  相似文献   

19.
Micro-arc oxidation (MAO) is not applicable to prepare ceramic coatings on the surface of steel directly. In this work, hybrid method of MAO and hot-dipping aluminum (HDA) were employed to fabricate composite ceramic coatings on the surface of Q235 steel. The evolution of MAO coatings, such as growth rate, thickness of the total coatings, ingrown and outgrown coatings, cross section and surface morphologies and phase composition of the ceramic coatings were studied. The results indicate that both the current density and the processing time can affect the total thickness, the growth rate and the ratio of ingrown and outgrown thickness of the ceramic coatings. The total thickness, outgrown thickness and growth rate have maximum values with the processing time prolonged. The time when the maximum value appears decreases and the ingrown dominant turns to outgrown dominant little by little with the current density increasing. The composite coatings obtained by this hybrid method consists of three layers from inside to outside, i.e. Fe-Al alloy layer next to the substrate, aluminum layer between the Fe-Al layer and the ceramic coatings which is as the top exterior layer. Metallurgical bonding was observed between every of the two layers. There are many micro-pores and micro-cracks, which act as discharge channels and result of quick and non-uniform cooling of melted sections in the MAO coatings. The phase composition of the ceramic coatings is mainly composed of amorphous phase and crystal Al2O3 oxides. The crystal Al2O3 phase includes κ-Al2O3, θ-Al2O3 and β-Al2O3. Compared with the others, the β-Al2O3 content is the least. The MAO process can be divided into three periods, namely the common anodic oxidation stage, the stable MAO stage and the ceramic coatings destroyed stage. The exterior loose part of the ceramic coatings was destroyed badly in the last period which should be avoided during the MAO process.  相似文献   

20.
In this paper, ceramic coatings were prepared on biomedical NiTi alloys by micro-arc oxidation (MAO) in constant voltage mode. The current density-time response was recorded during the MAO process. The microstructure, element distribution and phase composition of the coatings prepared at different MAO treatment times were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), thin-film X-ray diffraction (TF-XRD) and X-ray photoelectron spectroscopy (XPS). The corrosion behavior of the coatings in 0.9% NaCl solution was evaluated by the potentiodynamic polarization test. It is found that the coatings become more compact with increasing the MAO treatment time, and the growth rate of coating decreases. The results of TF-XRD, EDS and XPS indicate that the coatings are composed of a large amount of γ-Al2O3 and a little α-Al2O3, TiO2 and Ni2O3. The Ni content of the coatings is about 3 at.%, which is greatly lower than that of NiTi substrate. The bonding strength of coating-substrate is higher than 40 MPa for all the samples in this study. The corrosion resistance of the coatings is about two orders of magnitude higher than that of the uncoated NiTi alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号