首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inhibitive action of some thiadiazole derivatives, namely 2,5-bis(2-thienyl)-1,3,4-thiadiazole (2-TTH) and 2,5-bis(3-thienyl)-1,3,4-thiadiazole (3-TTH) against the corrosion of mild steel in 0.5 M H2SO4 solution has been investigated using weight loss measurements, Tafel polarisation and electrochemical impedance spectroscopy (EIS) techniques. The experimental results obtained revealed that these compounds inhibited the steel corrosion in acid solution. The protection efficiency increased with increasing inhibitors concentration and the ability of the molecule to adsorb on the steel surface was dependent on the position of the sulphur atom on the thienyl substituent. Inhibition efficiency values obtained from various methods employed were in reasonable agreement. Potentiodynamic polarisation studies clearly showed that 2-TTH and 3-TTH acted as mixed inhibitors. Adsorption of these inhibitors on steel surface obeyed to Langmuir adsorption isotherm. X-ray photoelectron spectroscopy and the thermodynamic data of adsorption showed that inhibition of steel corrosion in normal sulphuric solution by n-TTH is due to the formation of a chemisorbed film on the steel surface. Molecular modelling was used to gain some insight, about structural and electronic effects in relation to the inhibiting efficiencies.  相似文献   

2.
Novel corrosion inhibitors, namely 1-{2-[(2-hydroxyethyl)thio]ethyl}pyrrolidin-2-one (P5) and {[2-(2-oxopyrrolidin-1-yl)ethyl]thio}acetic acid (P4), were synthesised and tested as corrosion inhibitors for steel in 0.5 M H2SO4. The effects of P4 and P5 are also compared to their initial reactants 1-vinylpyrrolidin-2-one (P1), 2-mercaptoethanol (P2) and mercaptoacetic acid (P3). The study was carried out by weight loss measurements, potentiodynamic polarisation, linear polarisation resistance (Rp) and electrochemical impedance spectroscopy (EIS) methods. The inhibition efficiency increases with the concentration of P5 to attain 89% at 5 × 10−3 M. We note good agreement between the various methods explored. Polarisation measurements show also that the pyrrolidones act essentially as cathodic inhibitors. The cathodic curves indicate that the reduction of proton at the steel surface is an activating mechanism. P4 and P5 adsorb on the steel surface according to Langmuir adsorption model. Effect of temperature is also studied in the 298-353 K range. Efficiency is explained by the theoretical studies.  相似文献   

3.
The efficiency of 3,5-bis(n-pyridyl)-1,3,4-oxadiazole (n-POX, n = 1, 2, 3), as corrosion inhibitors for mild steel in 1 M perchloric acid (HClO4) have been determined by weight loss measurements and electrochemical studies. The results show that these inhibitors revealed a good corrosion inhibition even at very low concentrations. Comparison of results among those obtained by the studied oxadiazoles shows that 3-POX was the best inhibitor. Polarisation curves indicate that n-pyridyl substituted-1,3,4-oxadiazoles are mixed type inhibitors in 1 M HClO4. The adsorption of these inhibitors follows a Langmuir isotherm model. The electronic properties of n-POX, obtained using the AM1 semi-empirical quantum chemical approach, were correlated with their experimental efficiencies using the linear resistance model (LR).  相似文献   

4.
The effect of the addition of some tetrazolic type organic compounds: 1-phenyl-5-mercapto-1,2,3,4-tetrazole (PMT), 1,2,3,4-tetrazole (TTZ), 5-amino-1,2,3,4-tetrazole (AT) and 1-phenyl-1,2,3,4-tetrazole (PT) on the corrosion of brass in nitric acid is studied by weight loss, polarisation and electrochemical impedance spectroscopy (EIS) measurements. The explored methods gave almost similar results. Results obtained reveal that PMT is the best inhibitor and the inhibition efficiency (E%) follows the sequence: PMT > PT > AT > TTZ. Polarization measurements also indicated that tetrazoles acted as mixed-type inhibitors without changing the mechanism of the hydrogen evolution reaction. Partial π-charge on atoms has been calculated. Correlation between the highest occupied molecular orbital energy EHOMO and inhibition efficiencies was sought. The adsorption of PMT on the brass surface followed the Langmuir isotherm. Effect of temperature is also studied in the (25-50 °C) range.  相似文献   

5.
Corrosion inhibitors are widely used in acid solutions during pickling and descaling. Mostly organic compounds containing N, O, and S groups are employed as inhibitors. In this study, the inhibition performance of metal cations such as Zn2+, Mn2+ and Ce4+ ions in the concentration range 1-10 × 10−3 M has been found out. The corrosion behaviour of iron in 0.5 M H2SO4 in the presence of metal cations is studied using polarization and impedance methods. It is found that the addition of these metal cations inhibits the corrosion markedly. The inhibition effect is in the following order Ce4+ ? Mn2+ > Zn2+.  相似文献   

6.
The corrosion inhibition of iron in 0.5 M H2SO4 solutions by alkyl quaternary ammonium halides (AQAH) inhibitors has been studied by potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) measurements. The correlation between inhibition efficiency and molecular structure of the AQAH compounds is investigated. The results show that besides the concentration, the structure of alkyl groups and the type of halide ions of these AQAH inhibitors greatly influence the inhibition efficiency. Data obtained from EIS measurements are analyzed to model the corrosion inhibition process through appropriate equivalent circuit models.  相似文献   

7.
The effect of two pyrazole-type organic compounds, namely ethyl 5,5′-dimethyl-1′H-1,3′-bipyrazole-3 carboxylate (P1) and 3,5,5′-trimethyl-1′H-1,3′-bipyrazole (P2) on the corrosion behaviour of steel in 1 M hydrochloric acid (HCl) solution is investigated at 308 K by weight loss measurements, potentiodynamic polarisation and impedance spectroscopy (EIS) methods. The inhibition efficiencies obtained from cathodic Tafel plots, gravimetric and EIS methods are in good agreement. Results obtained show that the compound P2 is the best inhibitor and its efficiency reaches 84% at 10−3 M. Potentiodynamic polarisation studies show that pyrazolic derivatives are cathodic-type inhibitors and these compounds act on the cathodic reaction without changing the mechanism of the hydrogen evolution reaction. The inhibition efficiency of P2 is temperature-dependent in the range from 308 to 353 K and the associated activation energy has been determined. P2 adsorbs on the steel surface according to Langmuir adsorption model. The calculation of the total partial charge of inhibitor atoms is computed.  相似文献   

8.
The inhibition action of the citric acid and three surfactants: sodium dodecyl sulfate (SDS), t-octyl phenoxy polyethoxyethanol (Triton X-100), sodium dodecyl benzene sulphonate (SDBS) on the corrosion behavior and gas evolution of Pb-Sb-As-Se was investigated in 12.5 M H2SO4 solution with linear sweep polarization, cyclic voltammetry and weight loss measurements methods. The results drawn from different techniques are comparable. It was found that these surfactants and citric acid act as good inhibitors for the corrosion of lead alloy in H2SO4 solution. SDS inhibited most effectively the lead alloy corrosion among the three surfactants and citric acid. The inhibition efficiency for the inhibitors decreases in the order: SDS > SDBS > Triton X-100 > citric acid > blank. The inhibition efficiency increases with rising of the inhibitor concentration. In this work, the effect of the inhibitors on hydrogen and oxygen evolution was studied. In addition, it was found that the adsorption of used inhibitors on lead alloy surface follows Langmuir isotherm.  相似文献   

9.
The inhibitor performance of chemically synthesized water soluble poly(aminoquinone) (PAQ) on iron corrosion in 0.5 M sulphuric acid was studied in relation to inhibitor concentration using potentiodynamic polarization and electrochemical impedance spectroscopy measurements. On comparing the inhibition performance of PAQ with that of the monomer o-phenylenediamine (OPD), the OPD gave an efficiency of 80% for 1000 ppm while it was 90% for 100 ppm of PAQ. PAQ was found to be a mixed inhibitor. Besides, PAQ was able to improve the passivation tendency of iron in 0.5 M H2SO4 markedly.  相似文献   

10.
Three kinds of novel corrosion inhibitors, bis-(1,1′-benzotriazoly)-α,ω-succinyldiamide (BSU), bis-(1,1′-benzotriazoly)-α,ω-adipoyldiamide (BAD), and bis-(1,1′-benzotriazoly)-α,ω-azelayldiamide (BAZ) were synthesized and certified by IR and 1H NMR. Their corrosion inhibition effects for copper in 0.5 M H2SO4 were evaluated by weight-loss method. It shows that among the three compounds, only BSU behaves better compared with BTA. The inhibition efficiency (IE) increased with increasing BSU concentration to 85.2% at the 5 × 10−4 M level. Polarization studies showed that BSU suppressed both anodic and cathodic corrosion reactions. The minimum energy conformation of these compounds was obtained by MM2 force field program. The two benzotriazoly moieties in BSU molecule are more parallel than in other compounds. This is benefit to increase the inhibition effects of BSU.  相似文献   

11.
This study examines the use of some 4H-triazole derivatives, namely 3,5-diphenyl-4H-1,2,4-triazole (DHT), 3,5-bis(4-pyridyl)-4H-1,2,4-triazole (4-PHT) and 3,5-bis(4-methyltiophenyl)-4H-1,2,4-triazole (4-MTHT) for corrosion and dissolution protection of mild steel in normal hydrochloric acid solution. The inhibiting efficiency of the different additives is evaluated by means of weight loss and electrochemical techniques such as ac impedance measurements and polarisation curves. The experimental results obtained reveal that 4-MTHT is the best effective inhibitor and the inhibition efficiency is found to be in the following order: 4-MTHT > 4-PHT > DHT. The variation in inhibitive efficiency mainly depends on the type and nature of the substituents present in the inhibitor molecule. Polarisation curves show that theses triazoles are mixed-type inhibitors in 1 M HCl. The inhibition efficiency increases with 4H-triazole derivatives concentration and attains the maximum value of 99.6% in the case of 4-MTHT at 5 × 10−4 M. The results obtained from weight loss electrochemical studies were in reasonable agreement. The adsorption of 4H-triazole derivatives on the steel surface obeys to the Langmuir isotherm model. The thermodynamic data of adsorption and activation are determined and discussed. The fundamental thermodynamic functions were used to glean important information about the 4H-triazoles inhibitory behaviour. Molecular modeling was used to get better insight, about structural and electronic effects in relation to the inhibition efficiencies.  相似文献   

12.
The effect of addition of 4′,4-dihydroxychalcone (P1), 4-aminochalcone (P2) and 4-bromo, 4′-methoxychalcone (P3) on the corrosion of steel in 0.5 M sulphuric acid has been studied by weight loss measurements, potentiodynamic and EIS measurements. We investigate the synergistic effect of iodide ions on the corrosion inhibition of steel in the presence of chalcone derivatives. The corrosion rates of the steel decrease with the increase of the chalcones concentration, while the inhibition efficiencies increase. The addition of iodide ions enhances the inhibition efficiency considerably. The presence of iodide ions increases the degree of surface coverage. The synergism parameters SΘ and SI, calculated from surface coverage and the values of inhibition efficiency, in the case of chalcone derivatives are found to be larger than unity. The enhanced inhibition efficiency in the presence of iodide ions is only due to synergism and there is a definite contribution from the inhibitors molecules. E (%) obtained from the various methods is in good agreement. Polarisation measurements show also that the compounds act as cathodic inhibitors.  相似文献   

13.
The inhibition effect of metal-free phthalocyanine (H2Pc), copper phthalocyanine (CuPc) and copper phthalocyanine tetrasulfuric tetrasodium salt (CuPc·S4·Na4) on mild steel in 1 mol/l HCl in the concentration range of 1.0 × 10−5 to 1.0 × 10−3 mol/l was investigated by electrochemical test, scanning electron microscope with energy dispersive spectrometer (SEM/EDS) and quantum chemical method. The potentiodynamic polarization curves of mild steel in hydrochloric acid containing these compounds showed both cathodic and anodic processes of steel corrosion were suppressed, and the Nyquist plots of impedance expressed mainly as a capacitive loop with different compounds and concentrations. For all these phthalocyanines, the inhibition efficiency increased with the increase in inhibitor concentration, while the inhibition efficiencies for these three phthalocyanines with the same concentration decreased in the order of CuPc·S4·Na4 > CuPc > H2Pc according to the electrochemical measurement results. The SEM/EDS analysis indicated that there are more lightly corroded and oxidative steel surface for the specimens after immersion in acid solution containing 1.0 × 10−3 mol/l phthalocyanines than that in blank. The quantum chemical calculation results showed that the inhibition efficiency of these phthalocyanines increased with decrease in molecule's LUMO energy, which was different from the micro-cyclic compounds.  相似文献   

14.
Effects of 2-amino-5-(ethylthio)-1,3,4-thiadiazole (ATD) on copper corrosion as a corrosion inhibitor in de-aerated, aerated and oxygenated 3% NaCl solutions have been studied using potentiodynamic polarization, potentiostatic current-time, electrochemical impedance spectroscopic (EIS), weight loss and pH measurements along with scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) investigations. Potentiodynamic polarization measurements indicated that the presence of ATD in these solutions greatly decreases cathodic, anodic and corrosion currents. Potentiostatic current-time measurements and SEM/EDX investigations also showed that the ATD molecules are strongly adsorbed on the copper surface preventing it from being corroded easily. EIS measurements revealed that the charge transfer resistance increases due to the presence of ATD, and this effect increases with oxygen content in the solution. Weight loss measurements gave an inhibition efficiency of about 83% with 1.0 mM ATD present, increasing to about 94% at the ATD concentration of 5.0 mM. Results together are internally consistent with each other, showing that ATD is a good mixed-type inhibitor for copper corrosion with its inhibition efficiency increasing in the order of oxygenated > aerated > de-aerated 3% NaCl solutions.  相似文献   

15.
The inhibition effect of three naphthyridine derivatives namely 2-amino-4-(4-methoxyphenyl)-1,8-naphthyridine-3-carbonitrile (ANC-1), 2-amino-4-(4-methylphenyl)-1,8-naphthyridine-3-carbonitrile (ANC-2) and 2-amino-4-(3-nitrophenyl)-1,8-naphthyridine-3-carbonitrile (ANC-3) as corrosion inhibitors for N80 steel in 15% HCl by using gravimetric, electrochemical techniques (EIS and potentiodynamic polarization), SEM, EDX and quantum chemical calculation. The order of inhibition efficiency is ANC-1>ANC-2>ANC-3. Potentiodynamic polarization reveals that these inhibitors are mixed type with predominant cathodic control. Studied inhibitors obey the Langmuir adsorption isotherm. The quantum calculation is in good agreement with experimental results.  相似文献   

16.
The effect of addition of 1,3-bis(3-hyroxymethyl-5-methyl-1-pyrazole) propane (M = 264 g). HMPP on steel corrosion in 0.5 M sulphuric acid is studied by weight-loss, electrochemical polarisation and electrochemical impedance spectroscopy (EIS) measurements at various temperatures. The results obtained showed that HMPP acts as a good corrosion inhibitor. The inhibition efficiency increases with the bipyrazole compound to attain 88%. It acts as a mixed-type inhibitor. Trends in the increase of charge-transfer resistance and decrease of capacitance values also show the adsorption of the molecule on the metal surface. The bipyrazole adsorbs on the steel surface according to the Langmuir isotherm adsorption model. Effect of temperature indicates that inhibition efficiency decreases with temperature between 25 and 85 °C.  相似文献   

17.
K. F. Khaled   《Applied Surface Science》2004,230(1-4):307-318
The inhibiting action of (chloromethyl) triphenyl phosphonium chloride (CTP), tetraphenyl phosphonum chloride (TP), triphenyl phosphine oxide (TPO), triphenyl (phenylmethyl) phosphonium chloride (TPM) and triphenyl phosphine (TPP) on the corrosion of iron in 1 M HCl solution was studied using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Experimental results revealed that CTP, TP, TPO, and TPM act as inhibitors for iron in acid environments, while TPP is an accelerator. These compounds are mixed-type inhibitors and the inhibition efficiency increased with increasing concentrations. Equivalent circuits of the investigated systems are suggested.  相似文献   

18.
Corrosion inhibition by some new triazole derivatives on mild steel in 1 M hydrochloric acid solutions has been investigated by weight loss test, electrochemical measurement, scanning electronic microscope analysis and quantum chemical calculations. The results indicate that these compounds act as mixed-type inhibitors retarding the anodic and cathodic corrosion reactions and do not change the mechanism of either hydrogen evolution reaction or mild steel dissolution. The studied compounds following the Langmuir adsorption isotherm, and the thermodynamic parameters were determined and discussed. The effect of molecular structure on the inhibition efficiency has been investigated by ab initio quantum chemical calculations. The electronic properties such as highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) energy levels, energy gap (LUMO-HOMO), dipole moment and molecular orbital densities were calculated.  相似文献   

19.
Inhibition of mild steel corrosion in deaerated 0.5 M sulfuric acid solutions containing various concentrations of indole-5-carboxylic acid is studied in the temperature range from 25 to 55 °C using weight-loss, potentiodynamic and spectrophotometric tests. The adsorptive behaviour of inhibitor is also investigated using electrochemical impedance spectroscopy measurements. The indole-5-carboxylic acid is found to shift the corrosion potentials towards more noble values. This shift indicates that the addition of inhibitor mainly affects the anodic process, raising the anodic overpotential more than that of the cathodic, i.e. the indole-5-carboxylic acid behaves as mixed-type inhibitor. Because the cathodic Tafel slopes for hydrogen reduction (bc) are affected, the inhibitor probably affects the hydrogen reduction mechanism. The activation energy values (Ea) indicate that the indole-5-carboxylic acid increases the activation energy of the corrosion reaction. The adsorption behaviour of indole-5-carboxylic acid follows Langmuir's isotherm. Both the low values of and its decrease with temperature suggest physical adsorption. Double layer capacitance-potential curves indicate considerable adsorption of the inhibitor in the potential range (−400 to −800 mV/SCE).  相似文献   

20.
The inhibitive action of self-assembled films derived from two ligands Schiff bases, including N,N′-ethylen-bis (salicylidenimine) and N,N′-ortho-phenylen-bis (salicylidenimine) on copper surface has been studied by electrochemical techniques in chloride and acidic solutions. It was found that when the concentration of the inhibitors was increased the inhibition efficiency was increased, too. The results of the electrochemical studies have illustrated that the inhibition efficiency of S-o-ph-S is higher than S-E-S. Both the Schiff bases obeyed the Langmuir isotherm and thermodynamics calculations revealed that S-o-ph-S had larger adsorption constant and more negative free energy of adsorption with respect to S-E-S. When the films were modified by propanethiol and 1-dodecanethiol, the corrosion resistance of mixed films was significantly increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号