首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Epitaxial La1−xSrxMnO3 (LSMO) films were prepared by excimer laser-assisted metal organic deposition (ELAMOD) at a low temperature using ArF, KrF, and XeCl excimer lasers. Cross-section transmission electron microscopy (XTEM) observations confirmed the epitaxial growth and homogeneity of the LSMO film on a SrTiO3 (STO) substrate, which was prepared using ArF, KrF, and XeCl excimer lasers. It was found that uniform epitaxial films could be grown at 500 °C by laser irradiation. When an XeCl laser was used, an epitaxial film was formed on the STO substrate at a fluence range from 80 to 140 mJ/cm2 of the laser fluence for the epitaxial growth of LSMO film on STO substrate was changed. When the LaAlO3 (LAO) substrate was used, an epitaxial film was only obtained by ArF laser irradiation, and no epitaxial film was obtained using the KrF and XeCl lasers. When the back of the amorphous LSMO film on an LAO substrate was irradiated using a KrF laser, no epitaxial film formed. Based on the effect of the wavelength and substrate material on the epitaxial growth, formation of the epitaxial film would be found to be photo thermal reaction and photochemical reaction. The maximum temperature coefficient of resistance (TCR) of the epitaxial La0.8Sr0.2MnO3 film on an STO substrate grown using an XeCl laser is 4.0%/K at 275 K. XeCl lasers that deliver stabilized pulse energies can be used to prepare LSMO films with good a TCR.  相似文献   

2.
We have studied the epitaxial growth of perovskite manganite LaMnO3 (LMO) on SrTiO3(1 0 0) in the excimer laser assisted metal organic deposition process. The LMO was preferentially grown from the substrate surface by the KrF laser irradiation. The study of amorphous LMO film thickness dependence on epitaxial growth under the excimer laser irradiation revealed that the photo-thermal heating effect strongly depended on the amorphous film thickness due to a low thermal conductivity of amorphous LMO: the ion-migration for chemical bond-forming at the reaction interface would be strongly enhanced in the amorphous LMO film with the large film thickness about 210 nm. On the other hand, the photo-chemical effect occurred efficiently for the amorphous film thickness in the range of 35-210 nm. These results indicate that the epitaxial growing rate was dominated by the photo-thermal heating after the photo-chemical activation at the growth interface.  相似文献   

3.
Si K-edge XAFS was used to characterize a stoichiometric SiC film prepared by pulsed KrF laser deposition. The film was deposited on a p-type Si(1 0 0) wafer at a substrate temperature of 250 °C in high vacuum with a laser fluence of ∼5 J/cm2. The results reveal that the film contains mainly a SiC phase with an amorphous structure in which the Si atoms are bonded to C atoms in its first shell similar to that of crystalline SiC powder but with significant disorder.  相似文献   

4.
The growth process of silver thin films deposited by pulsed laser ablation in a controlled inert gas atmosphere was investigated. A pure silver target was ablated in Ar atmosphere, at pressures ranging between 10 and 100 Pa, higher than usually adopted for thin film deposition, at different numbers of laser shots. All of the other experimental conditions such as the laser (KrF, wavelength 248 nm), the fluence of 2.0 J cm−2, the target to substrate distance of 35 mm, and the temperature (295 K) of the substrates were kept fixed. The morphological properties of the films were investigated by transmission and scanning electron microscopies (TEM, SEM). Film formation results from coalescence on the substrate of near-spherical silver clusters landing as isolated particles with size in the few nanometers range. From a visual inspection of TEM pictures of the films deposited under different conditions, well-separated stages of film growth are identified.  相似文献   

5.
Ca0.997Pr0.002TiO3 thin films that show strong red luminescence were successfully prepared by means of an excimer laser assisted metal organic deposition process with a KrF laser at a fluence of 100 mJ/cm2 at 100 °C. The CPTO films grew on the silica, borosilicate, and indium-tin-oxide coated glasses. The crystallinity of the Ca0.997Pr0.002TiO3 films depended on the substrates; the borosilicate and indium-tin-oxide coated glasses with a large optical absorption of a KrF laser (λ = 248 nm) were effective for the crystallization for the Ca0.997Pr0.002TiO3. In addition, a high thermal conductivity of the indium-tin-oxide coated glass substrate could also improve the crystallinity due to an enhancement of thermal propagation to the film. Oxygen annealing at 500 °C for 6 h successfully eliminated the oxygen vacancy produced by the laser irradiation, and also remarkably improved the PL emission intensity. Thus, we have shown that substrate properties such as an optical absorbance and a thermal conductivity were quite important factors for the crystal growth and the PL emission for the Ca0.997Pr0.002TiO3 in the excimer laser assisted metal organic deposition process.  相似文献   

6.
We present the deposition of aluminum nitride (AlN) thin film by KrF excimer laser sputtering and the study of the effects of substrate temperature and laser fluences. Deposition rate of AlN thin film at 0.3 Å/pulse has been achieved with laser fluence of 1500 mJ/cm2 and at substrate temperature of 250 K, and this shows the enhancement of the deposition rate at low substrate temperature. Surface morphology of the deposited films is characterized by atomic force microscopy (AFM). In addition, the electrical performance of the MIS devices with AlN thin films prepared in this experiment has been characterized.  相似文献   

7.
3 (100) single crystal substrates have been investigated. Poorly absorbed KrF irradiation leads to localized, deep, and unstable damage on the crystal surfaces. By contrast ArF has been found to induce well-localized roughness and microcracks on LaAlO3(100) surfaces at fluences between 0.2 and 1.8 J/cm2. The material emission threshold was estimated at around 0.5 J/cm2 and cracks appeared above 1.4 J/cm2. The substrate surface state determines YBa2Cu3O7-x film growth, leading to morphological changes that have been related to a decrease in adatom mobility on the substrate. The most striking feature is the drastic reduction in YBa2Cu3O7-x outgrowth density inside the irradiated areas. Irradiation has little effect on film crystalline properties. The main effect on the electrical properties can be restricted to a decrease of critical current density up to a factor of 104, but such an important decrease is only observed in the most intensively irradiated substrates. Received: 18 November 1996/Accepted: 12 June 1997  相似文献   

8.
Using the lyotropic liquid crystalline templating strategy, the nanostructured platinum film was electrochemically deposited on the α-Al2O3 supported dense palladium membrane. The XRD and TEM results of the Pt film revealed a hexagonal array of cylindrical pores with a uniform pore diameter of ca. 3.8 nm and a pore-to-pore separation of ca. 7.6 nm. The structure parameters of the Pt film were almost the same as those of the hexagonal liquid crystalline template. Based on SEM observations, the Pt film was featureless, smooth, and tightly adherent to the dense Pd membrane. The specific surface area of the Pt film, measured by using cyclic voltammetry, was ca. 13.8 m2 g−1, which was in accord with the theoretical value of 14.5 m2 g−1 for a perfect hexagonal nanostructure with the same structure parameters. By combining the dense Pd membrane for selective permeation to hydrogen with the Pt film of high specific surface area for catalysis, the as-synthesized two-layer film will be a promising catalytic membrane to intensify hydrogen-related reaction processes.  相似文献   

9.
This paper describes a special method of laser-based deposition to synthesize palladium-ceramic composite membranes. Thin film Pd was deposited on a ceramic substrate by Nd-YAG laser irradiation of coating precursor PdCl2 on γ-alumina substrate. The parameters of the laser processing technique were optimized to synthesize metal-ceramic composite membranes. The physical and chemical characteristics of Pd coated γ-alumina membranes were studied and compared with various other alumina membranes referenced in the literature. Hydrogen permeation experiments were performed in a CO + CO2 + CH4 + H2 environment under typical catalytic steam gasifier exit conditions. The Pd-ceramic composite showed good mechanical and thermal stability and resulted in a hydrogen permeability flux of about 0.061 mol/m2 s. The activation energy of the Pd membrane was found to be 5.39 kJ/mol in a temperature range of 900-1300 °F.  相似文献   

10.
Poly(9,9-dioctylfluorene) (PFO) polymer films were deposited by matrix-assisted pulsed laser evaporation (MAPLE) technique. The polymer was diluted (0.5 wt%) in tetrahydrofuran and, once cooled to liquid nitrogen temperature, it was irradiated with a KrF excimer laser. 10,000 laser pulses were used to deposit PFO films on 〈1 0 0〉 Si substrates at different temperatures (−16, 30, 50 and 70 °C). One PFO film was deposited with 16,000 laser pulses at a substrate temperature of 50 °C. The morphology, optical and structural properties of the films were investigated by SEM, AFM, PL and FTIR spectroscopy. SEM inspection showed different characteristic features on the film surface, like deflated balloons, droplets and entangled polymer filaments. The roughness of the films was, at least partially, controlled by substrate heating, which however had the effect to reduce the deposition rate. The increase of the laser pulse number modified the target composition and increased the surface roughness. The angular distribution of the material ejected from the target confirmed the forward ejection of the target material. PFO films presented negligible modification of the chemical structure respect to the bulk material.  相似文献   

11.
Europium-doped yttrium oxide (Y2O3:Eu) thin films were successfully deposited on quartz and ITO/glass substrates by excimer-laser-assisted metal organic deposition (ELAMOD) at low temperatures. The effects of laser wavelength and thermal temperature on the films’ crystallinity and photoluminescence properties were investigated. Films irradiated by an ArF laser at 80 mJ/cm2 and 400–500°C were highly crystallized compared with those prepared by thermal MOD. In contrast, when the film was irradiated by a KrF laser at 500°C, no crystalline Y2O3:Eu was formed. The Y2O3:Eu film irradiated by the ArF laser at 80 mJ/cm2 and 500°C showed typical PL spectra of Eu3+ ions with cubic symmetry and a 5D07F2 transition at ∼612 nm. The PL intensity at 612 nm was much higher for the film prepared with ELAMOD than for that prepared by the thermal-assisted process, and the photoemission intensity of the film prepared with ELAMOD strongly depended on the substrate material.  相似文献   

12.
We report the use of PLD to grow different ZnO nanostructures. Very different film morphologies have been observed using different laser wavelengths to ablate the target. The influence of substrate temperature and oxygen background pressure on the film morphology has been investigated too. Smooth and rough films, hexagonal pyramids and columns have been obtained by using a KrF excimer laser (248 nm) for the target ablation, while hexagonal hierarchical structures and pencils have been obtained by using ArF (193 nm). Photoluminescence and X-ray diffraction measurements revealed the good quality of the samples, in particular of those deposited using the ArF laser beam.  相似文献   

13.
Pulsed laser deposition with a Nd:YAG laser was used to grow thin films from a pre-synthesized Ti3SiC2 MAX-phase formulated ablation target on oxidized Si(1 0 0) and MgO(1 0 0) substrates. The depositions were carried out in a substrate temperature range from 300 to 900 K, and the pressure in the deposition chamber ranged from vacuum (10−5 Pa) to 0.05 Pa Argon background pressure. The properties of the films have been investigated by Rutherford backscattering spectrometry for film thickness and stoichiometric composition and X-ray diffraction for the crystallinity of the films. The silicon content of the films varied with the energy density of the laser beam. To suppress especially the silicon re-sputtering from the substrate, the energy of the incoming particles must be below a threshold of 20 eV. Therefore, the energy density of the laser beam must not be too high. At constant deposition energy density the film thickness depends strongly on the background pressure. The X-ray diffraction measurements show patterns that are typical of amorphous films, i.e. no Ti3SiC2 related reflections were found. Only a very weak TiC(2 0 0) reflection was seen, indicating the presence of a small amount of crystalline TiC.  相似文献   

14.
Epitaxial Sb-doped SnO2 (0 0 1) thin film on a TiO2 (0 0 1) substrate was successfully prepared by laser-assisted metal organic deposition at room temperature. The effects of the precursor thin film and laser fluence on the resistivity, carrier concentration, and mobility of the Sb-doped SnO2 film were investigated. The resistivity of the Sb-doped SnO2 film prepared by direct irradiation to metal organic film is one order of magnitude lower than that of film prepared by irradiation to amorphous Sb-doped SnO2 film. From an analysis of Hall measurements, the difference between the resistivity of the Sb-doped SnO2 film prepared using the metal organic precursor film and that of amorphous precursor film appears to be caused by the mobility. Direct conversion of the metal organic compound by excimer laser irradiation was found to be effective for preparing epitaxial Sb-doped SnO2 film with low resistivity.  相似文献   

15.
La0.8Sr0.2MnO3 films were prepared on SrTiO3 (STO) and LaAlO3 (LAO) substrates using excimer laser-assisted metal organic deposition (ELAMOD). For the LAO substrate, no epitaxial La0.8Sr0.2MnO3 film was obtained by laser irradiation in the fluence range from 60 to 110 mJ/cm2 with heating at 500 °C. On the other hand, an epitaxial La0.8Sr0.2MnO3 film on the STO substrate was formed by laser irradiation in the fluence range from 60 to 100 mJ/cm2 with heating at 500 °C. To optimize the electrical properties for an IR sensor, the effects of the laser fluence, the irradiation time and the film thickness on the temperature dependence of the resistance and temperature coefficient of resistance (TCR: defined as 1/R·(dR/dT)) of the LSMO films were investigated. An LSMO film on the STO substrate that showed the maximum TCR of 3.9% at 265 K was obtained by the ELAMOD process using the KrF laser.  相似文献   

16.
A pulsed KrF excimer laser of irradiance of about 108 W/cm2 was utilized to synthesize Si nanocrystals on SiO2/Si substrates. The results were compared with that ones obtained by applying low bias voltage to Si(1 0 0) target in order to control the kinetic energy of plasma ions. Glancing incidence X-ray diffraction spectra indicate the presence of silicon crystalline phases, i.e. (1 1 1) and (2 2 0), on SiO2/Si substrates. The average Si nanocrystal size was estimated to be about 45 nm by using the Debye-Scherrer formula. Scanning electron microscopy and atomic force microscopy images showed the presence of nanoparticles of different size and shape. Their distribution exhibits a maximum concentration at 49 nm and a fraction of 14% at 15 nm.  相似文献   

17.
Tungsten trioxide and titanium dioxide thin films were synthesised by pulsed laser deposition. We used for irradiations of oxide targets an UV KrF* (λ = 248 nm, τFWHM ≅ 20 ns, ν = 2 Hz) excimer laser source, at 2 J/cm2 incident fluence value. The experiments were performed in low oxygen pressure. The (0 0 1) SiO2 substrates were heated during the thin film deposition process at temperature values within the 300-500 °C range. The structure and crystalline status of the obtained oxide thin films were investigated by high resolution transmission electron microscopy. Our analyses show that the films are composed by nanoparticles with average diameters from a few to a few tens of nm. Moreover, the films deposited at substrate temperatures higher than 300 °C are crystalline. The tungsten trioxide films consist of a mixture of triclinic and monoclinic phases, while the titanium dioxide films structure corresponds to the tetragonal anatase phase. The oxide films average transmittance in the visible-infrared spectral range is higher than 80%, which makes them suitable for sensor applications.  相似文献   

18.
Ca-doped LaMnO3 (LCMO) thin films have been successfully prepared on SrTiO3 (STO) and [(LaAlO3)0.3-(SrAlTaO6)0.7] (LSAT) substrates using the excimer laser assisted metal-organic deposition (ELAMOD) process. The crystallization and the epitaxial growth of the amorphous metal-organic LCMO thin films have been achieved using a KrF excimer laser irradiation while the substrates were kept at constant temperature of 500 °C. Epitaxial films were obtained using laser fluence in the interval of 50-120 mJ/cm2. The microstructure of the LCMO films was studied using cross-section transmission electron microscopy. High quality of LCMO films having smooth surfaces and sharp interfaces were obtained on both the STO and the LSAT substrates. The effect of the laser fluence on the temperature coefficient of resistance (TCR) was investigated. The largest values of TCR of the LCMO grown on the LSAT and the STO substrates of 8.3% K−1 and 7.46% K−1 were obtained at different laser fluence of 80 mJ/cm2 and 70 mJ/cm2, respectively.  相似文献   

19.
Diamond-like carbon (DLC) films were fabricated by pulsed laser ablation of a liquid target. During deposition process the growing films were exited by a laser beam irradiation. The films were deposited onto the fused silica using 248 nm KrF eximer laser at room temperature and 10−3 mbar pressure. Film irradiation was carried out by the same KrF laser operating periodically between the deposition and excitation regimes. Deposited DLC films were characterized by Raman scattering spectroscopy. The results obtained suggested that laser irradiation intensity has noticeable influence on the structure and hybridization of carbon atoms deposited. For materials deposited at moderate irradiation intensities a very high and sharp peak appeared at 1332 cm−1, characteristic of diamond crystals. At higher irradiation intensities the graphitization of the amorphous films was observed. Thus, at optimal energy density the individual sp3-hybridized carbon phase was deposited inside the amorphous carbon structure. Surface morphology for DLC has been analyzed using atomic force microscopy (AFM) indicating that more regular diamond cluster formation at optimal additional laser illumination conditions (∼20 mJ per impulse) is possible.  相似文献   

20.
The structure and morphology of chromium disilicide (CrSi2) nanometric films grown on 〈1 0 0〉 silicon substrates both at room temperature (RT) and at 740 K by pulsed laser ablation are reported. A pure CrSi2 crystal target was ablated with a KrF excimer laser in vacuum (∼3 × 10−5 Pa). Morphological and structural properties of the deposited films were investigated using Rutherford backscattering spectrometry (RBS), grazing incidence X-ray diffraction (GID), X-ray reflectivity (XRR), scanning (SEM) and transmission electron microscopy (TEM). From RBS analysis, the films’ thickness resulted of ∼40 nm. This value is in agreement with the value obtained from XRR and TEM analysis (∼42 and ∼38 nm, respectively). The films’ composition, as inferred from Rutherford Universal Manipulation Program simulation of experimental spectra, is close to stoichiometric CrSi2. GID analysis showed that the film deposited at 740 K is composed only by the CrSi2 phase. The RT deposited sample is amorphous, while GID and TEM analyses evidenced that the film deposited at 740 K is poorly crystallised. The RT deposited film exhibited a metallic behaviour, while that one deposited at 740 K showed a semiconductor behaviour down to 227 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号