首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
We present here the experimental results on cleaning of radioactive dielectric particulates, loosely deposited on stainless steel, by coherent light of 1064 nm wavelength and its three harmonics occurring at 532 nm, 355 nm and 266 nm, derived from an Nd-YAG laser. For the initial few exposures, the decontamination factor has been found to be highest when exposed to 1064 nm radiation. With increasing number of exposures, however, the radiation with reducing wavelength assumes a more important role as a cleaning agent. The observation of almost no cleaning with 1064 nm and much reduced cleaning with its harmonics when the contamination is deposited on a transparent substrate confirms the dominant role played by metal substrate towards expelling the loose particulates from its surface.  相似文献   

2.
Thin nano-structured carbon films have been deposited in vacuum by pulsed laser ablation, from a rotating polycrystalline graphite target, on Si 〈1 0 0〉 substrates, kept at temperatures ranging from RT to 800 °C. The laser ablation was performed by a Nd:YAG laser, operating in the near IR (λ = 1064 nm).X-ray diffraction analysis, performed at grazing incidence angle, both in-plane (ip-gid) and out-of-plane (op-gid), has shown the growth of oriented nano-sized graphene particles, characterised by high inter-planar stacking distance (d? ∼ 0.39 nm), compared to graphite. The film structure and texturing are strongly related both to laser wavelength and substrate temperature: the low energy associated to the IR laser radiation (1.17 eV) generates activated carbon species of large dimensions that, also at low T (∼400 °C), easy evolve toward more stable sp2 aromatic bonds, in the plume direction. Increasing temperature the nano-structure formation increases, causing a further aggregation of aromatic planes, voids formation, and a related density (by X-ray reflectivity) drop to very low values. SEM and STM show for these samples a strongly increased macroscopic roughness. The whole process, mainly at higher temperatures, is characterised by a fast kinetic mode, far from equilibrium and without any structural or spatial rearrangement.  相似文献   

3.
Antireflection coatings at the center wavelength of 1053 nm were prepared on BK7 glasses by electron-beam evaporation deposition (EBD) and ion beam assisted deposition (IBAD). Parts of the two kinds of samples were post-treated with oxygen plasma at the environment temperature after deposition. Absorption at 1064 nm was characterized based on surface thermal lensing (STL) technique. The laser-induced damage threshold (LIDT) was measured by a 1064-nm Nd:YAG laser with a pulse width of 38 ps. Leica-DMRXE Microscope was applied to gain damage morphologies of samples. The results revealed that oxygen post-treatment could lower the absorption and increase the damage thresholds for both kinds of as-grown samples. However, the improving effects are not the same.  相似文献   

4.
The results of patterning of the indium-tin oxide (ITO) film on the glass substrate with high repetition rate picosecond lasers at various wavelengths are presented. Laser radiation initiated the ablation of the material, forming grooves in ITO. Profile of the grooves was analyzed with a phase contrast optical microscope, a stylus type profiler, scanning electron microscope (SEM) and atomic force microscope (AFM). Clean removal of the ITO film was achieved with the 266 nm radiation when laser fluence was above the threshold at 0.20 J/cm2, while for the 355 nm radiation, the threshold was higher, above 0.46 J/cm2. The glass substrate was damaged in the area where the fluence was higher than 1.55 J/cm2. The 532 nm radiation allowed getting well defined grooves, but a lot of residues in the form of dust were generated on the surface. UV radiation with the 266 nm wavelength provided the widest working window for ITO ablation without damage of the substrate. Use of UV laser radiation with fluences close to the ablation threshold made it possible to minimize surface contamination and the recast ridge formation during the process.  相似文献   

5.
S.S. Yap 《Applied Surface Science》2007,253(24):9521-9524
In pulsed Nd:YAG laser ablation of highly oriented pyrolytic graphite (HOPG) at 10−6 Torr, diamond-like carbon (DLC) are deposited at laser wavelengths of 1064, 532, and 355 nm on substrates placed in the target-plane. These target-plane samples are found to contain varying sp3 content and composed of nanostructures of 40-200 nm in size depending on the laser wavelength and laser fluence. The material and origin of sp3 in the target-plane samples is closely correlated to that in the laser-modified HOPG surface layer, and hardly from the backward deposition of ablated carbon plume. The surface morphology of the target-plane samples shows the columnar growth and with a tendency for agglomeration between nanograins, in particular for long laser wavelength at 1064 nm. It is also proposed that DLC formation mechanism at the laser-ablated HOPG is possibly via the laser-induced subsurface melting and resolidification.  相似文献   

6.
Experimental results are presented on laser-assisted fragmentation of gold-containing nanoparticles suspended in liquids (either ethanol or water). Two kinds of nanoparticles are considered: (i) elongated Au nanorods synthesized by laser ablation of a gold target immersed in liquid phase; (ii) gold-covered NiCo nanorods with high aspect ratio (θ ∼ 10) synthesized by wet chemistry processes. The shape selectivity induced by laser fragmentation of these nanorods is gained via tuning the wavelength of laser radiation into different parts of the spectrum of their plasmon resonance corresponding to different aspect ratios θ. Fragmentation is performed using three laser wavelengths, involving a Cu vapour laser (510 and 578 nm) and a Nd:YAG (1064 nm). Nanoparticles are characterized by UV-vis spectrometry, Transmission Electron Microscopy (TEM). The effect of laser pulse duration (nanosecond against picosecond range) is also studied in the case of fragmentation with an IR laser radiation.  相似文献   

7.
Lasing characteristics and two-photon absorption (TPA) of merocyanine dyes with solvatochromism of different types are first investigated. Efficient lasing is excited in solutions pumped by radiation of the 2nd harmonic of a Nd-YAG laser (532 nm) with the lasing efficiency exceeding 40% and by XeCl laser radiation (308 nm) with the lasing efficiency up to 19%. The TPA cross-section at a wavelength of 1064 nm is determined. It is established that for merocyanines possessing the highest positive and negative values of solvatochromism, the TPA cross-section reaches maximum values of 115 and 125 GM, respectively. Influence of the special features of the electronic structure, spectral and luminescent properties, solvatochromic behavior, and nature of the medium on the lasing characteristics and nonlinear absorption of merocyanine dyes is investigated. Prospects for merocyanine application in modern optical technologies are demonstrated.  相似文献   

8.
In this study we report on the results of experiments devoted to the depth profile analysis of zinc-coated steel samples using the laser-induced breakdown spectroscopy (LIBS) technique. The dependence of zinc and iron emissions in three ablation atmospheres (air, argon, helium) was measured using the fundamental wavelength (1064 nm) of the Nd:YAG laser. The highest possible depth resolution was achieved by optimizing the experimental parameters, such as the delay time (which affects the tailing of the zinc emission signal), focusing conditions, energy delivered to the sample, and choice of buffer gases. Current research indicates that there is a constant need to optimize these parameters so that reliable depth-profiling analysis can be performed.  相似文献   

9.
HgCdTe thin films have been deposited on Si(1 1 1) substrates at different substrate temperatures by pulsed laser deposition (PLD). An Nd:YAG pulsed laser with a wavelength of 1064 nm was used as laser source. The influences of the substrate temperature on the crystalline quality, surface morphology and composition of HgCdTe thin films were characterized by X-ray diffraction (XRD), selected area electron diffraction (SAED), atomic force microscopy (AFM) and energy dispersive X-ray spectroscopy (EDS). The results show that in our experimental conditions, the HgCdTe thin films deposited at 200 °C have the best quality. When the substrate temperature is over 250 °C, the HgCdTe film becomes thermodynamically unstable and the quality of the film is degraded.  相似文献   

10.
Interaction of Nd:YAG laser, operating at 1064 or 532 nm wavelength and a pulse duration of 40 ps, with AISI 1045 steel was studied. Surface damage thresholds were estimated to be 0.30 and 0.16 J/cm2 at the wavelengths of 1064 and 532 nm, respectively. The steel surface modification was studied at the laser energy density of 10.3 J/cm2 (at 1064 nm) and 5.4 J/cm2 (at 532 nm). The energy absorbed from Nd:YAG laser beam is partially converted to thermal energy, which generates a series of effects, such as melting, vaporization of the molten material, shock waves, etc. The following AISI 1045 steel surface morphological changes and processes were observed: (i) both laser wavelengths cause damage of the steel in the central zone of irradiated area; (ii) appearance of a hydrodynamic feature in the form of resolidified droplets of the material in the surrounding outer zone with 1064 nm laser wavelength; (iii) appearance of periodic surface structures, at micro- and nano-level, with the 532 nm wavelength and, (iv) development of plasma in front of the target. Generally, interaction of laser beam with the AISI 1045 steel (at 1064 and 532 nm) results in a near-instantaneous creation of damage, meaning that large steel surfaces can be processed in short time.  相似文献   

11.
Interaction of an Nd:YAG laser, operating at 1064 or 532 nm wavelength and pulse duration of 40 ps, with titanium implant was studied. Surface damage thresholds were estimated to 0.9 and 0.6 J/cm2 at wavelengths 1064 and 532 nm, respectively. The titanium implant surface modification was studied by the laser beam of energy density of 4.0 and 23.8 J/cm2 (at 1064 nm) and 13.6 J/cm2 (at 532 nm). The energy absorbed from the Nd:YAG laser beam is partially converted to thermal energy, which generates a series of effects, such as melting, vaporization of the molten material, shock waves, etc. The following titanium/implant surface morphological changes were observed: (i) both laser wavelengths cause damage of the titanium in the central zone of the irradiated area, (ii) appearance of a hydrodynamic feature in the form of resolidified droplets of the material in the surrounding outer zone with the 1064 nm laser wavelength and (iii) appearance of wave-like microstructures with the 532 nm wavelength. Generally, both laser wavelengths and the corresponding laser energy densities can efficiently enhance the titanium/implant roughness. This implant roughness is expected to improve its bio-integration. The process of the laser interaction with titanium implant was accompanied by formation of plasma.  相似文献   

12.
TiO2 film of around 850 nm in thickness was deposited on a soda-lime glass by PVD sputtering and irradiated using one pulse of krypton-fluorine (KrF) excimer laser (wavelength of 248 nm and pulse duration of 25 ns) with varying fluence. The color of the irradiated area became darker with increasing laser fluence. Irradiated surfaces were characterized using optical microscopy, scanning electron microscopy, Raman spectroscopy and atomic force microscopy. Surface undergoes thermal annealing at low laser fluence of 400 and 590 mJ/cm2. Microcracks at medium laser fluence of 1000 mJ/cm2 are attributed to surface melting and solidification. Hydrodynamic ablation is proposed to explain the formation of micropores and networks at higher laser fluence of 1100 and 1200 mJ/cm2. The darkening effect is explained in terms of trapping of light in the surface defects formed rather than anatase to rutile phase transformation as reported by others. Controlled darkening of TiO2 film might be used for adjustable filters.  相似文献   

13.
Nanosecond (∼100 ns) pulsed (10 Hz) Nd:YAG laser operating at the wavelength (λ) of 1064 nm with pulse energies of 0.16-1.24 mJ/cm2 has irradiated 10Sm2O3·40BaO·50B2O3 glass. It is demonstrated for the first time that the structural modification resulting the large decease (∼3.5%) in the refractive index is induced by the irradiation of YAG laser with λ=1064 nm. The lines with refractive index changes are written in the deep inside of 100-1000 μm depths by scanning laser. The line width is 1-13 μm, depending on laser pulse energy and focused beam position. It is proposed that the samarium atom heat processing is a novel technique for inducing structural modification (refractive index change) in the deep interior of glass.  相似文献   

14.
The growth of epitaxial Nd:Gd3Ga5O12 (GGG) on Y3Al5O12 (YAG) by femtosecond pulsed laser deposition is reported. We have used a Ti:sapphire laser at a wavelength of 800 nm and pulse length of 130 fs, operating at a repetition rate of 1 kHz. The film properties have been studied systematically as a function of the deposition parameters of laser fluence, spot-size, oxygen pressure, target-substrate distance and temperature. Scanning electron microscopy, atomic force microscopy and X-ray diffractometry were used to characterise the surface structure and crystallinity of the films. X-ray diffraction analysis shows that epitaxial growth has occurred. A comparison between the ion velocities produced by nanosecond and femtosecond laser ablation of the GGG target material has been investigated by the Langmuir probe technique. The results indicate a large difference in the plasma characteristics between femtosecond and nanosecond ablation, with ion velocities up to eight times faster observed in the femtosecond case.  相似文献   

15.
Pulsed laser ablation of Ag and Au targets, immersed in double-distilled water is used to synthesize metallic nanoparticles (NPs). The targets are irradiated for 20 min by laser pulses at different wavelengths—the fundamental and the second harmonic (SHG) (λ = 1064 and 532 nm, respectively) of a Nd:YAG laser system. The ablation process is performed at a repetition rate of 10 Hz and with pulse duration of 15 ns. Two boundary values of the laser fluence for each wavelength under the experimental conditions chosen were used—it varied from several J/cm2 to tens of J/cm2. Only as-prepared samples were measured not later than two hours after fabrication. The NPs shape and size distribution were evaluated from transmission electron microscopy (TEM) images. The suspensions obtained were investigated by optical transmission spectroscopy in the near UV and in the visible region in order to get information about these parameters. Spherical shape of the NPs at the low laser fluence and appearance of aggregation and building of nanowires at the SHG and high laser fluence was seen. Dependence of the mean particle size at the SHG on the laser fluence was established. Comments on the results obtained have been also presented.  相似文献   

16.
Au/SiO2 nanocomposite films were prepared by radio frequency sputtering technique and annealing. The above nanocomposite films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and atomic force microscopy (AFM). The surface of the nanocomposite films was uniform with the particle diameter of 100-300 nm. The size of Au crystallites increased on increasing annealing time. The luminescent behavior of the nanocomposite films was characterized by photoluminescence (PL) with different excitation wavelengths. Two emission peaks at around 525 nm and 560 nm were observed with the excitation wavelength at 325 nm. An intensive emission peak at around 325 nm was observed with the excitation wavelength at 250 nm, which is related to the defective structure of the amorphous SiO2 layer because of oxygen deficiency, and could be applied to many fields, such as ultraviolet laser and ultraviolet detector.  相似文献   

17.
Investigation of the process of nanohole formation on silicon surface mediated with near electromagnetic field enhancement in vicinity of gold particles is described. Gold nanospheres with diameters of 40, 80 and 200 nm are used. Irradiation of the samples with laser pulse at fluences below the ablation threshold for native Si surface, results in a nanosized surface modification. The nanostructure formation is investigated for the fundamental (λ = 800 nm, 100 fs) and the second harmonic (λ = 400 nm, 250 fs) of the laser radiation generated by ultrashort Ti:sapphire laser system. The near electric field distribution is analyzed by an Finite Difference Time Domain (FDTD) simulation code. The properties of the produced morphological changes on the Si surface are found to depend strongly on the polarization and the wavelength of the laser irradiation. When the laser pulse is linearly polarized the produced nanohole shape is elongated in the E-direction of the polarization. The shape of the hole becomes symmetrical when the laser radiation is circularly polarized. The size of the ablated holes depends on the size of the gold particles, as the smallest holes are produced with the smallest particles. The variation of the laser fluence and the particle size gives possibility of fabricating structures with lateral dimensions ranging from 200 nm to below 40 nm. Explanation of the obtained results is given on the basis simulations of the near field properties using FDTD model and Mie's theory.  相似文献   

18.
For the laser drilling of aluminum nitride ceramic the processing results and the effects related to pulsed irradiation were investigated. Images of the drilled surface revealed regular, cylindrically shaped holes of about 100 μm in diameter independently of the laser wavelength (1064/532/355 or 266 nm). The holes were surrounded by circular heat-affected zones of larger diameter. A comparison of the elemental compositions of the original material and the processed one indicated a decrease of the nitrogen concentration in the affected area. The spectral analysis of the ablated material composition revealed the presence of ions and neutrals in dependence on the laser intensity applied. It was found that at intensity values close to the ablation threshold the ejected material consisted mainly of neutrals, while doubling of the intensity resulted in appearance of single-ionized Al species, which were also observed together with Al clusters in the mass spectra of the UV-excited plasma. Their prevailing content was revealed for drilling at higher intensities around 15 GW/cm2 at 532 nm. Results of model calculations indicated, in agreement with the experiment, that at the threshold the ceramic decomposes into gaseous nitrogen and solid Al particulates, while at a higher fluence the material particles vaporize and influence the quality of drilling.  相似文献   

19.
Femtosecond pulsed laser ablation (τ = 120 fs, λ = 800 nm, repetition rate = 1 kHz) of thin diamond-like carbon (DLC) films on silicon was conducted in air using a direct focusing technique for estimating ablation threshold and investigating the influence of ablation parameter on the morphological features of ablated regions. The single-pulse ablation threshold estimated by two different methods were ?th(1) = 2.43 and 2.51 J/cm2. The morphological changes were evaluated by means of scanning electron microscopy. A comparison with picosecond pulsed laser ablation shows lower threshold and reduced collateral thermal damage.  相似文献   

20.
In this paper we report the formation of gold nanoparticles during laser ablation of gold target in water in the absence of any additives. The experiments were carried out by using the radiation of the pulsed Nd:YAG laser, operating at the second (532 nm, 10 ns, 10 Hz), or the fourth harmonic (266 nm) wavelengths. The properties of the nanoparticles were found to be susceptible to the additional 532 and 266 nm laser irradiation. It has been established that both the mean size of the nanoparticles and their stability could be varied by proper selection of the parameters of laser ablation and postirradiation such as laser fluence and wavelength combinations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号