首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Preparation of activated carbons by microwave heating KOH activation   总被引:2,自引:0,他引:2  
Activated carbons with high surface areas were prepared via KOH activation process by microwave (MW) heating. As a comparison, activated carbons were also prepared by conventional heating (EF) method. The influences of KOH/Mesocarbon microbeads (MCMB) weight ratio and activation time on the pore properties of the activated carbons were investigated. For both MW and EF heating methods, the surface area and pore volume increase to a maximum and then decrease with the KOH/MCMB ratio increasing. The effects of activation time on the pore properties depend on the KOH/MCMB ratio. The activated carbons prepared by MW heating have higher surface area and larger pore volume than those by EF heating when KOH/MCMB ratio is the same. The MW heating method shortens the activation time considerably. Activated carbons prepared by MW heating show low content of oxygen containing groups.  相似文献   

2.
Activated carbons were prepared from waste tyres by gasification with steam and carbon dioxide and their characteristics were investigated. A two-stage activation procedure (pyrolysis at 800 °C in N2 atmosphere, followed by steam or carbon dioxide activation) was used for the production of activated samples. The effect of the activation temperature (750-900 °C) and the activation time (1-3 h) on the surface characteristics of the prepared carbon was investigated. Carbons produced to different degrees of burn-off were characterized by means of their nitrogen adsorption isotherms at 77 K. In both sets of experiments, the mesopore, micropore volume, and BET surface area increased almost linearly with the degree of activation. For burn-off values lower than 53%, the steam activation produced carbons with a narrower and more extensive microporosity and higher BET and external surface area than the carbon dioxide activation. As the activation proceeds (burn-off > 53%), a strong development of the mesoporosity in the carbons was observed and the micropores size distribution revealed broader micropores, that is, a more heterogeneous distribution.  相似文献   

3.
Using cherry stones, the preparation of activated carbon has been undertaken in the present study by chemical activation with potassium hydroxide. A series of KOH-activated products was prepared by varying the carbonisation temperature in the 400-900 °C range. Such products were characterised texturally by gas adsorption (N2, −196 °C), mercury porosimetry, and helium and mercury density measurements. FT-IR spectroscopy was also applied. The carbons prepared as a rule are microporous and macroporous solids. The degree of development of surface area and porosity increases with increasing carbonisation temperature. For the carbon heated at 900 °C the specific surface area (BET) is 1624 m2 g−1, the micropore volume is 0.67 cm3 g−1, the mesopore volume is 0.28 cm3 g−1, and the macropore volume is 1.84 cm3 g−1.  相似文献   

4.
N-Alkyl-imidazole has been synthesized by sonochemical irradiation of imidazole and 1-bromobutane using alkaline-promoted carbons (exchanged with the binary combinations of Na, K and Cs). The catalysts were characterized by X-ray photoelectron spectroscopy, thermal analysis and N2 adsorption isotherms. Under the experimental conditions, N-alkyl-imidazoles can be prepared with a high activity and selectivity. It is observed that imidazole conversion increases in parallel with increasing the basicity of the catalyst. The influence of the alkaline promoter, the reaction temperature, and the amount of catalyst on the catalytic activity has been studied. For comparison, the alkylation of imidazole has also been performed in a batch reactor system under thermal activation.  相似文献   

5.
Activated carbons were prepared by air and carbon dioxide activation, from almond tree pruning, with the aim of obtaining carbons that reproduce the textural and mechanical properties of the carbons currently used in the filtering system of the condenser vacuum installation of a Thermonuclear Plant (CNA; Central Nuclear de Almaraz in Caceres, Spain), produced from coconut shell. The variables studied in non-catalytic gasification series with air were the temperature (215-270 °C) and the time (1-16 h) and the influence of the addition of one catalyst (Co) and the time (1-2 h) in catalytic gasification. In the case of activation with CO2, the influence of the temperature (700-950 °C) and the time (1-8 h) was studied. The resulting carbons were characterized in terms of their BET surface, porosity, and pore size distribution. The N2 adsorption isotherms at 77 K for both series showed a type I behaviour, typical of microporous materials. The isotherms showed that with both gasificant agents the temperature rise produced an increase in the carbon porosity. With regards to the activation time, a positive effect on the N2 adsorbed volume on the carbons was observed. The best carbons of each series, as well as the CNA (carbon currently used in the CNA), were characterized by mercury porosimetry and iodine solution adsorption isotherms. The results obtained allowed to state that several of the carbons produced had characteristics similar to the carbon that is target of reproduction (which has SBET of 741 m2 g−1, Vmi of 0.39 cm3 g−1 and a iodine retention capacity of 429.3 mg g−1): carbon C (gasification with CO2 at 850 °C during 1 h), with SBET of 523 m2 g−1, Vmi of 0.33 cm3 g−1 and a iodine retention capacity of 402.5 mg g−1, and carbon D (gasification with CO2 at 900 °C during 1 h), whose SBET is 672 m2 g−1, Vmi is 0.28 cm3 g−1 and has a iodine retention capacity of 345.2 mg g−1.  相似文献   

6.
We performed ab initio calculations, using density functional theory, to study spin polarization in carbon nanostructures with disclinations. The results indicate that compounds with positive and negative Gaussian curvature may exhibit a net magnetic moment in the ground state. Additionally, we can conclude that, carbon compounds that display an odd number of pentagons and heptagons, present polarization in the ground state.  相似文献   

7.
The Monte Carlo method in its grand ensemble variant (GCMC) is used in combination with experimental data in order to characterize microporous carbons and obtain the optimal pore size distribution (PSD). In particular, the method is applied in the case of AX-21 carbon. Adsorption isotherms of CO2 (253 and 298 K) and H2 (77 K) up to 20 bar have been measured, while the computed isotherms resulted from the GCMC simulations for several pore widths up to 3.0 nm. For the case of H2 at 77 K quantum corrections were introduced with the application of the Feynman-Hibbs (FH) effective potential. The adsorption isotherms were used either individually or in a combined manner in order to deduce PSDs and their reliability was examined by the ability to predict the experimental adsorption isotherms. The combined approach was found to be capable of reproducing more accurately all the available experimental isotherms.  相似文献   

8.
One-dimensional porous silicon (PSi) photonic quantum-well structures have been electrochemically fabricated and spectroscopically characterized. The photonic well in the structure is a photonic crystal (PC) consisting of alternately stacked high- and low-refractive-index PSi layers. Discrete states are observed in both reflectance and transmission spectra. It is found that the number of confined states appearing in the photonic bandgap of the photonic barrier depends on the number of periods adopted in the well PC. Thus, increased confined photonic states can be created simply by increasing the number of periods of the well PC in the structures. Received: 26 February 2002 / Accepted: 17 May 2002 / Published online: 4 December 2002 RID="*" ID="*"Corresponding author. Fax: +86-21/6510-4949, E-mail: xyhou@fudan.edu.cn  相似文献   

9.
Adsorption of toxic heavy metal ions and aromatic compounds onto activated carbons of various amount of surface C-O complexes were examined to study the optimum surface conditions for adsorption in aqueous phase. Cadmium(II) and zinc(II) were used as heavy metal ions, and phenol and nitrobenzene as aromatic compounds, respectively. Activated carbon was de-ashed followed by oxidation with nitric acid, and then it was stepwise out-gassed in helium flow up to 1273 K to gradually remove C-O complexes introduced by the oxidation. The oxidized activated carbon exhibited superior adsorption for heavy metal ions but poor performance for aromatic compounds. Both heavy metal ions and aromatics can be removed to much extent by the out-gassed activated carbon at 1273 K. Removing C-O complexes, the adsorption mechanisms would be switched from ion exchange to Cπ-cation interaction for the heavy metals adsorption, and from some kind of oxygen-aromatics interaction to π-π dispersion for the aromatics.  相似文献   

10.
A density functional theory (DFT) study of graphene synthesis from graphite oxidation and exfoliation is presented. The calculated DFT results for O adsorption predict CO as a most stable bond on the graphene oxide (GO) sheet. The obtained exfoliation energy for the graphene and the GO are 143 and ∼70 mJ/m2 that verify easier exfoliation of the graphite oxide compared with the graphite. Furthermore, the DFT results show that for decreasing the exfoliation energy of the GO at least two layers of the graphite should be oxidized during the oxidation process.  相似文献   

11.
The use of two activated carbon fibres, one laboratorial sample prepared from a commercial acrylic textile fibre and one commercial sample of Kynol®, as prepared/received and modified by reaction with powdered sulfur and H2S gas in order to increase the sulfur content were studied for the removal of mercury from aqueous solution and from flue gases from a fluidized bed combustor. The sulfur introduced ranged from 1 to 6 wt.% depending on the method used. The most important parameter for the mercury uptake is the type of sulfur introduced rather than the total amount and it was found that the H2S treatment of ACF leads to samples with the highest mercury uptake, despite the lower sulfur amount introduced. The modified samples by both methods can remove HgCl2 from aqueous solutions at pH 6 within the range 290-710 mg/g (ACF) which can be favourably compared with other studies already published. The use of a filter made with an activated carbon fibre modified by powdered sulfur totally removed the mercury species present in the flue gases produced by combustion of fossil fuel.  相似文献   

12.
A new approach to the fabrication of back-gated graphene FET (field effect transistor) arrays on microchannels was investigated. Narrow walls fabricated on a substrate with SU-8 (a negative photoresist), with top metal electrodes were pressed onto another silicon/SiO2 substrate with predeposited graphene pieces such that the electrodes came into contact with graphene pieces and formed the source and drain contact. The SU-8 narrow walls with the top metal layer were fabricated by the conventional lift-off process. The graphene pieces were reduced chemically from graphite oxide. The IDS changed immediately by more than 17% when the device was exposed to an ethanol atmosphere. The current recovered very well after the ethanol gas was pumped out. The SU-8 microchannels served as gas flow passages that helped the ethanol vapor reach the sensitive region of the device: the graphene channel. This work provides a convenient way of constructing back-gated graphene FETs for sensing applications. This method could potentially be scaled up for mass production.  相似文献   

13.
The effect of oxidation by 20% nitric acid on the properties and performance of active carbons enriched with nitrogen by means of the reaction with urea in the presence of air has been studied. The study has been made on demineralised orthocoking coal and the carbonisates obtained from it at 600 or 700 °C, subjected to the processes of nitrogenation, oxidation and activation with KOH in different sequences. The amount of nitrogen introduced into the carbon with the aid of urea has been found to depend on the stage at which the process of nitrogenation was performed. The process of oxidation of the demineralised coal and the active carbon obtained from the former has been found to favour nitrogen introduction into the carbon structure. In the process of nitrogenation of the carbonisates the amount of nitrogen introduced has inversely depended on the temperature of carbonisation. The modifications of the processes permitted obtaining materials of different textural parameters, different acid-base character of the surface and different iodine sorption capacity.  相似文献   

14.
The Monte Carlo method in its grand ensemble variant (GCMC) is used in order to study the hydrogen adsorption (77 K) characteristics of novel carbon structures, namely Carbon Cones (CCs). CCs are conical shaped curved graphitic sheets, with five different apex angles. CC structures with correct bonding topology were developed via atomistic-molecular simulations, while GCMC simulations of hydrogen adsorption were carried out on the five different apex angle structures. Emphasis has been given on the adsorption properties inside the cones and it was found that cone tips are characterized by enhanced adsorbability. The results were also compared with similar calculations on carbon nanotubes.  相似文献   

15.
Diamond coatings were deposited by synergy of the hot filament CVD method and the pulse TEA CO2 laser, in spectroactive and spectroinactive diamond precursor atmospheres. Resulting diamond coatings are interpreted relying on evidence of scanning electron microscopy as well as microRaman spectroscopy. Thermal synergy component (hot filament) possesses an activating agent for diamond deposition, and contributes significantly to quality and extent of diamond deposition. Laser synergy component comprises a solid surface modification as well as the spectroactive gaseous atmosphere modification. Surface modification consists in changes of the diamond coating being deposited and, at the same time, in changes of the substrate surface structure. Laser modification of the spectroactive diamond precursor atmosphere means specific consumption of the precursor, which enables to skip the deposition on a defined substrate location. The resulting process of diamond coating elimination from certain, desired locations using the CO2 laser might contribute to tailoring diamond coatings for particular applications. Additionally, the substrate laser modification could be optimized by choice of a proper spectroactive precursor concentration, or by a laser radiation multiple pass through an absorbing medium.  相似文献   

16.
We study the transport properties of a Z-shaped graphene nanoribbon (GNR). It is found that the quasibound states in the Z-shaped junction induce resonant peaks around the Dirac point in the conductance profile. The resonant transmission via the quantum bound state is very sensitive to the size of the junction. The number and also the lifetimes of the quasibound states increase with the size of the Z-shaped junction. Long lifetime bound states which do not induce obvious resonant peaks exist in the junction with a wider or longer zigzag edged GNR. The resonant characteristics of the Z-shaped GNR can be tuned by the variation of the geometrical size.  相似文献   

17.
The surface fractal dimension was calculated by using a mathematical model and mercury intrusion data for a variety of bi- and multi-disperse porous solids including silica gels, alumina pellets, and building stones. The mathematical model was obtained by modifying the well-established scaling relation published previously [Ind. Eng. Chem. Res., 34 (1995) 1383-1386]. It was also verified by comparing with the theoretical surface fractal dimensions for regular fractal structures (Skerpinski tetrahedron and Menger sponge) and the calculated surface fractal dimensions for silica gel and alumina particles via the linear fitting method established previously. The calculation results for various bi- and multi-disperse porous solids have demonstrated that the scale-dependent nature of the surface fractal dimension is ubiquitous. The difference in the surface fractal dimension between pore size intervals usually exists. The estimation of the surface fractal dimension on an average stand may lead to erroneous results.  相似文献   

18.
We develop a pump-probe experiment system, in which vibrational dynamics of a solid sample under ion irradiation can be measured in real time. In situ observation enables us to monitor small changes induced by ion irradiation, without being influenced by the irreproducibility of the sample quality or the experimental configuration. We apply the experimental system to investigate the femtosecond dynamics of the coherent E2g1 phonon of graphite under 5 keV He+ irradiation. A slight decrease in the dephasing rate of the phonon at the initial stage, as well as a downshift followed by an upshift of the phonon frequency, are clearly demonstrated, all of which were ambiguous in the ex situ experiment due to the poor reproducibility of the surface quality. This technique could also be applied to study femtosecond vibrational dynamics in real time during thermal annealing, film deposition with e.g. ablation and sputter, and molecular adsorption on substrates.  相似文献   

19.
Self-standing CVD diamond films with different dominant crystalline surfaces are polished by the thermal-iron plate polishing method. The influence of the dominant crystalline surfaces on polishing etfficiency is investigated by measuring the removal rate and final roughness. The smallest rms roughness of 0.14 μm is measured with smallest removal rate in the films with the initial (220) dominant crystalline surface. Activation energy for the polishing is analysed by the Arrhenius relation. It is found that the values are 170kJ/mol, 222kJ/mol and 214kJ/mol for the film with three different dominant crystalline surfaces. Based on these values, the polishing cause is regarded as the graphitization-controlling process. In the experiment, we find that transformation of the dominant crystalline surfaces from (111) to (220) always appears in the polishing process when we polish the (111) dominant surface.  相似文献   

20.
In this study, a simple method to prepare a novel magnetic carrier based on carbon matrix has been built by heating the aqueous solution of glucose and oleic acid-stabilized Fe3O4 nanoparticle at 170 °C for 3 h. The results show that the surface hydrophobic modification of Fe3O4 nanoparticle is necessary for the successful synthesis of Fe3O4/C nanocomposition, and a possible formation mechanism of Fe3O4/C nanocomposition was presented. The influence of the reaction parameters such as the concentration of oleic acid-stabilized Fe3O4 nanoparticle, the reaction time, etc. on the product was also investigated. In the typical reaction (2.5 g/L of oleic acid-stabilized Fe3O4 nanoparticle, 0.5 M of glucose), Fe3O4/C nanocompositions with the average diameter in the range 100–200 nm were obtained and its saturation is 12.4 emu/g. In order to characterize Fe3O4/C nanocompositions, XPS, XRD, FT–IR, and Mössbauer spectra were employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号