首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laser fluence, repetition rate and pulse duration effects on paint ablation   总被引:1,自引:0,他引:1  
The efficiency (mm3/(J pulse)) of laser ablation of paint was investigated with nanosecond pulsed Nd:YAG lasers (λ = 532 nm) as a function of the following laser beam parameters: pulse repetition rate (1-10,000 Hz), laser fluence (0.1-5 J/cm2) and pulse duration (5 ns and 100 ns). In our study, the best ablation efficiency (η ≅ 0.3 mm3/J) was obtained with the highest repetition rate (10 kHz) at the fluence F = 1.5 J/cm2. This ablation efficiency can be associated with heat accumulation at high repetition rate, which leads to the ablation threshold decrease. Despite the low thermal diffusivity and the low optical absorption of the paint (thermal confinement regime), the ablation threshold fluence was found to depend on the pulse duration. At high laser fluence, the ablation efficiency was lower for 5 ns pulse duration than for the one of 100 ns. This difference in efficiency is probably due to a high absorption of the laser beam by the ejected matter or the plasma at high laser intensity. Accumulation of particles at high repetition rate laser ablation and surface shielding was studied by high speed imaging.  相似文献   

2.
The laser-induced backside wet etching (LIBWE) is an advanced laser processing method used for structuring transparent materials. LIBWE with nanosecond laser pulses has been successfully demonstrated for various materials, e.g. oxides (fused silica, sapphire) or fluorides (CaF2, MgF2), and applied for the fabrication of microstructures. In the present study, LIBWE of fused silica with mode-locked picosecond (tp = 10 ps) lasers at UV wavelengths (λ1 = 355 nm and λ2 = 266 nm) using a (pyrene) toluene solution was demonstrated for the first time. The influence of the experimental parameters, such as laser fluence, pulse number, and absorbing liquid, on the etch rate and the resulting surface morphology were investigated. The etch rate grew linearly with the laser fluence in the low and in the high fluence range with different slopes. Incubation at low pulse numbers as well as a nearly constant etch rate after a specific pulse number for example were observed. Additionally, the etch rate depended on the absorbing liquid used; whereas the higher absorption of the admixture of pyrene in the used toluene enhances the etch rate and decreases the threshold fluence. With a λ1 = 266 nm laser set-up, an exceptionally smooth surface in the etch pits was achieved. For both wavelengths (λ1 = 266 nm and λ2 = 355 nm), LIPSS (laser-induced periodic surface structures) formation was observed, especially at laser fluences near the thresholds of 170 and 120 mJ/cm2, respectively.  相似文献   

3.
Femtosecond laser micromilling of Si wafers   总被引:1,自引:0,他引:1  
Femtosecond laser micromilling of silicon is investigated using a regeneratively amplified 775 nm Ti:Sapphire laser with a pulse duration of 150 fs operating at 1 kHz repetition rate. The morphological observation and topological analysis of craters fabricated by single-shot laser irradiation indicated that the material removal is thermal in nature and there are two distinct ablation regimes of low fluence and higher fluence with logarithmical relations between the ablation depth and the laser fluence. Crater patterns were categorized into four characteristic groups and their formation mechanisms were investigated. Femtosecond laser micromilling of pockets in silicon was performed. The effect of process parameters such as pulse energy, translation speed, and the number of passes on the material removal rate and the formation of cone-shaped microstructures were investigated. The results indicate that the microstructuring mechanism has a strong dependence on the polarization, the number of passes and laser fluence. The optimal laser fluence range for Si micromilling was found to be 2-8 J/cm2 and the milling efficiency attains its maximum between 10 and 20 J/cm2.  相似文献   

4.
Ablation process of 1 kHz rate femtosecond lasers (pulse duration 148 fs, wavelength 775 nm) with Au films on silica substrates has been systemically studied. The single-pulse threshold can be obtained directly. For the multiple pulses the ablation threshold varies with the number of pulses applied to the surface due to the incubation effect. From the plot of accumulated laser fluence N × ?th(N) and the number of laser pulses N, incubation coefficient of Au film can be obtained (s = 0.765). As the pulse energy is increased, the single pulse ablation rate is increasing following two ablation logarithmic regimes, which can be explained by previous research.  相似文献   

5.
Pulsed laser ablation of Ag and Au targets, immersed in double-distilled water is used to synthesize metallic nanoparticles (NPs). The targets are irradiated for 20 min by laser pulses at different wavelengths—the fundamental and the second harmonic (SHG) (λ = 1064 and 532 nm, respectively) of a Nd:YAG laser system. The ablation process is performed at a repetition rate of 10 Hz and with pulse duration of 15 ns. Two boundary values of the laser fluence for each wavelength under the experimental conditions chosen were used—it varied from several J/cm2 to tens of J/cm2. Only as-prepared samples were measured not later than two hours after fabrication. The NPs shape and size distribution were evaluated from transmission electron microscopy (TEM) images. The suspensions obtained were investigated by optical transmission spectroscopy in the near UV and in the visible region in order to get information about these parameters. Spherical shape of the NPs at the low laser fluence and appearance of aggregation and building of nanowires at the SHG and high laser fluence was seen. Dependence of the mean particle size at the SHG on the laser fluence was established. Comments on the results obtained have been also presented.  相似文献   

6.
Laser ablation of titanium in vacuum was performed using single- and dual-pulse regime in order to study crater formation. Crater profiles were analyzed by optical microscopy. It was found that the repetition-rate plays an important role in a process of laser ablation. The drilling is most effective for the highest repetition-rate. For the same total number of laser pulses clear drilling enhancement was achieved by dual-pulse regime of ablation in comparison to single-pulse regime. The strongest ablation rate in dual-pulse regime was achieved for the delay time between the pulses τ = 370 ns. Results are discussed in terms of decreased ablation threshold due to continuous heating of the target during the experiment.  相似文献   

7.
Single shot ablation of metallic materials of aluminium, titanium alloy (Ti6Al4V) and gold has been studied with 10 picoseconds (ps) laser pulses experimentally and theoretically. The ablation rate variation at high fluence was explained by a simplified predictive model based on critical-point phase separation (CPPS) theory. A comparison between experimental and numerical results inferred that CPPS may well be the dominant ablation mechanism for high fluence laser ablation at 10 ps laser duration.  相似文献   

8.
The results of patterning of the indium-tin oxide (ITO) film on the glass substrate with high repetition rate picosecond lasers at various wavelengths are presented. Laser radiation initiated the ablation of the material, forming grooves in ITO. Profile of the grooves was analyzed with a phase contrast optical microscope, a stylus type profiler, scanning electron microscope (SEM) and atomic force microscope (AFM). Clean removal of the ITO film was achieved with the 266 nm radiation when laser fluence was above the threshold at 0.20 J/cm2, while for the 355 nm radiation, the threshold was higher, above 0.46 J/cm2. The glass substrate was damaged in the area where the fluence was higher than 1.55 J/cm2. The 532 nm radiation allowed getting well defined grooves, but a lot of residues in the form of dust were generated on the surface. UV radiation with the 266 nm wavelength provided the widest working window for ITO ablation without damage of the substrate. Use of UV laser radiation with fluences close to the ablation threshold made it possible to minimize surface contamination and the recast ridge formation during the process.  相似文献   

9.
Ultrashort pulse laser ablation of metallic targets is investigated theoretically through establishing a modified two-temperature model that takes into account both the temperature dependent electron–lattice coupling and the electron–electron-collision dominated electron diffusion processes for higher electron temperature regime. The electron–lattice energy coupling rate is found to reduce only slowly with increasing pulse duration, but grow rapidly with laser fluence, implying that the melting time of metallic materials decreases as the laser intensity increases. By taking phase explosion as the primary ablation mechanism, the predicted dependences of ablation rates on laser energy fluences for different laser pulse widths match very well with the experimental data. It is also found that during phase explosion the ablation rate is almost independent of the pulse width, whereas the ablation threshold fluence increases with the pulse duration even for femtosecond pulses. These theoretical results should be useful in having proper understanding of the ablation physics of ultrafast micromachining of metal targets. PACS 52.50.Jm; 61.80.Az; 72.15.Cz; 79.20.Ap; 79.20.Ds  相似文献   

10.
Radiation from the UV excimer lasers, with the fluence above the ablation threshold, can etch the polymer surfaces by photoablation. In some cases different microstructures may appear on the surface during the laser ablation. In this paper the effect of the laser spot size on the cone formation on polyethersulfone films has been investigated. The experiments have been performed with a XeCl laser at the wavelength of 308 nm and at the fluences of 70 and 100 mJ/cm2 at air. For the investigation of the effect of the laser spot size on cone formation, the samples were irradiated at two different laser spot sizes of w1 and w2 = 0.1 w1. The morphology of the processed surface was studied by scanning electron microscopy (SEM). It has shown that the shape, size and density of cones change with the change of the laser spot size. Also, the number of pulses and the pulse repetition rate which are needed for threshold of cone formation are affected by the laser beam spot size on the surface.  相似文献   

11.
We report measurements of the laser induced breakdown threshold in lithium tantalate with different number of pulses delivered from a chirped pulse amplification Ti: sapphire system. The threshold fluences were determined from the relation between the diameter D2 of the ablated area and the laser fluence F0. The threshold of lithium tantalite under single-shot is found to be 1.84 J/cm2, and the avalanche rate was determined to be 1.01 cm2/J by calculation. We found that avalanche dominates the ablation process, while photoionization serves as a free electron provider.  相似文献   

12.
The influence of pulse duration on the laser-induced damage in undoped or infrared-absorbing-dye doped thin triazenepolymer films on glass substrates has been investigated for single, near-infrared (800 nm) Ti:sapphire laser pulses with durations ranging from 130 fs up to 540 fs and complementarily for infrared (1064 nm) Nd:YAG ns-laser single-pulse irradiation. The triazenepolymer material has been developed for high resolution ablation with irradiation at 308 nm. Post-irradiation optical microscopy observations have been used to determine quantitatively the threshold fluence for permanent laser damage. In contrast to our previous studies on a triazenepolymer with different composition [J. Bonse, S.M. Wiggins, J. Solis, T. Lippert, Appl. Surf. Sci. 247 (2005) 440], a significant dependence of the damage threshold on the pulse duration is found in the sub-picosecond regime with values ranging from ∼500 mJ/cm2 (130 fs) up to ∼1500 mJ/cm2 (540 fs). Other parameters such as the film thickness (50 nm and 1.1 μm samples) or the doping level show no significant influence on the material behavior upon irradiation. The results for fs- and ns-laser pulse irradiation are compared and analyzed in terms of existent ablation models.  相似文献   

13.
Ultra-short pulsed laser ablation and micromachining of n-type, 4H-SiC wafer was performed using a 1552 nm wavelength, 2 ps pulse, 5 μJ pulse energy erbium-doped fiber laser with an objective of rapid etching of diaphragms for pressure sensors. Ablation rate, studied as a function of energy fluence, reached a maximum of 20 nm per pulse at 10 mJ/cm2, which is much higher than that achievable by the femtosecond laser for the equivalent energy fluence. Ablation threshold was determined as 2 mJ/cm2. Scanning electron microscope images supported the Coulomb explosion (CE) mechanism by revealing very fine particulates, smooth surfaces and absence of thermal effects including melt layer formation. It is hypothesized that defect-activated absorption and multiphoton absorption mechanisms gave rise to a charge density in the surface layers required for CE and enabled material expulsion in the form of nanoparticles. Trenches and holes micromachined by the picosecond laser exhibited clean and smooth edges and non-thermal ablation mode for pulse repetition rates less than 250 kHz. However carbonaceous material and recast layer were noted in the machined region when the pulse repetition rate was increased 500 kHz that could be attributed to the interaction between air plasma and micro/nanoparticles. A comparison with femtosecond pulsed lasers shows the promise that picosecond lasers are more efficient and cost effective tools for creating sensor diaphragms and via holes in 4H-SiC.  相似文献   

14.
The laser-induced backside etching of fused silica with gallium as highly absorbing backside absorber using pulsed infrared Nd:YAG laser radiation is demonstrated for the first time. The influence of the laser fluence, the pulse number, and the pulse length on the etch rate and the etched surface topography was studied. The comparable high threshold fluences of about 3 and 7 J/cm2 for 18 and 73 ns pulses, respectively, are caused by the high reflectivity of the fused silica-gallium interface and the high thermal conductivity of gallium. For the 18 and 73 ns long pulses the etch rate rises almost linearly with the laser fluence and reaches a value of 350 and 300 nm/pulse at a laser fluence of about 12 and 28 J/cm2, respectively. Incubation processes are almost absent because etching is already observed with the first laser pulse at all etch conditions and the etch rate is constant up to 30 pulses.The etched grooves are Gaussian-curved and show well-defined edges and a smooth bottom. The roughness measured by interference microscopy was 1.5 nm rms at an etch depth of 0.6 μm. The laser-induced backside etching with gallium is a promising approach for the industrial application of the backside etching technique with IR Nd:YAG laser.  相似文献   

15.
We investigated the initial modification and ablation of crystalline silicon with single and multiple Ti:sapphire laser pulses of 5 to 400 fs duration. In accordance with earlier established models, we found the phenomena amorphization, melting, re-crystallization, nucleated vaporization, and ablation to occur with increasing laser fluence down to the shortest pulse durations. We noticed new morphological features (bubbles) as well as familiar ones (ripples, columns). A nearly constant ablation threshold fluence on the order of 0.2 J/cm2 for all pulse durations and multiple-pulse irradiation was observed. For a duration of ≈100 fs, significant incubation can be observed, whereas for 5 fs pulses, the ablation threshold does not depend on the pulse number within the experimental error. For micromachining of silicon, a pulse duration of less than 500 fs is not advantageous. Received: 4 December 2000 / Revised version: 29 March 2001 / Published online: 20 June 2001  相似文献   

16.
Energy fluence, defined as pulse energy over irradiated area, is a key parameter of pulsed laser processing. Nevertheless, most of the authors using this term routinely do not realize the problems related to the accurate measurement of the spot size. In the present paper we are aiming to approach this problem by ablating crystalline Si wafers with pulses of a commercial KrF excimer laser (λ = 248 nm, τ = 15 ns) both in vacuum and at ambient atmosphere. For any pulse energy, the size of the ablated area monotonously increases with increasing number of pulses. The difference in the ablated area could be as high as a factor of three when 2000 consecutive pulses impinge on the surface. The existence and extent of the gradual lowering of multi-pulse ablation threshold queries the applicability of routinely used procedure of dividing the pulse energy with the size of the ablated area exposed into either carbon-paper or a piece of Si with one or a few pulses when determining the fluence. A more quantitative way is proposed allowing comparison of results originating from different laboratories.  相似文献   

17.
Using a section of un-pumped Er/Yb co-doped fiber (EYDF) as a saturable absorber, Self-Q-switching and self-mode-locking pulses have been obtained in an all-fiber EYDF ring laser. Such laser is with the self-Q-switched pulse threshold of 135.22 mW, the repetition rate of approximately 22.2 kHz, and the pulse duration of ∼2.8 μs, respectively. The self-mode-locked threshold is 591.8 mW. By incorporating the saturable absorption in an un-pumped EYDF and a Mach-Zehnder interferometer, when the pump power is increased to 1242.9 mW, the continuous-wave (CW) mode-locking with the pulse width of 26 ns has also been demonstrated experimentally for the first time.  相似文献   

18.
The ablation process of thin copper films on fused silica by picosecond laser pulses is investigated. The ablation area is characterized using optical and scanning electron microscopy. The single-shot ablation threshold fluence for 40 ps laser pulses at 1053 nm has been determinated toF thres = 172 mJ/cm2. The ablation rate per pulse is measured as a function of intensity in the range of 5 × 109 to 2 × 1011 W/cm2 and changes from 80 to 250 nm with increasing intensity. The experimental ablation rate per pulse is compared to heat-flow calculations based on the two-temperature model for ultrafast laser heating. Possible applications of picosecond laser radiation for microstructuring of different materials are discussed.  相似文献   

19.
The average ablation depth per pulse of silver foil by 130 fs laser pulses has been measured in vacuum over a range of three orders of magnitude of pulse fluence up to 900 J cm−2. In addition, double pulses with separations up to 3.4 ns have been used to probe time scales of relevance for femtosecond ablation. The double pulse ablation depth, when each pulse fluence is 0.7 J cm−2, falls to that of a single pulse as the pulse separation is increased from 0 ps to 700 ps. This time scale decreases to only 4 ps as the fluence is increased to 11 J cm−2. It then jumps to 500 ps across a transition fluence where the slope of the ablation depth versus logarithmic fluence characteristic changes abruptly to a higher value. In addition, for pulse separations near 1000 ps, the second pulse can cause re-deposition of ejecta from the first pulse resulting in a double pulse ablation depth only 40% that of the first pulse alone. This has important implications for the interpretation of double pulse femto-LIBS intensities. Our results suggest that the optical properties of nano or mesoparticles play a significant role in double pulse ablation with large pulse separations.  相似文献   

20.
Nanosecond pulsed laser ablation of silicon in liquids   总被引:2,自引:0,他引:2  
Laser fluence and laser shot number are important parameters for pulse laser based micromachining of silicon in liquids. This paper presents laser-induced ablation of silicon in liquids of the dimethyl sulfoxide (DMSO) and the water at different applied laser fluence levels and laser shot numbers. The experimental results are conducted using 15 ns pulsed laser irradiation at 532 nm. The silicon surface morphology of the irradiated spots has an appearance as one can see in porous formation. The surface morphology exhibits a large number of cavities which indicates as bubble nucleation sites. The observed surface morphology shows that the explosive melt expulsion could be a dominant process for the laser ablation of silicon in liquids using nanosecond pulsed laser irradiation at 532 nm. Silicon surface’s ablated diameter growth was measured at different applied laser fluences and shot numbers in both liquid interfaces. A theoretical analysis suggested investigating silicon surface etching in liquid by intense multiple nanosecond laser pulses. It has been assumed that the nanosecond pulsed laser-induced silicon surface modification is due to the process of explosive melt expulsion under the action of the confined plasma-induced pressure or shock wave trapped between the silicon target and the overlying liquid. This analysis allows us to determine the effective lateral interaction zone of ablated solid target related to nanosecond pulsed laser illumination. The theoretical analysis is found in excellent agreement with the experimental measurements of silicon ablated diameter growth in the DMSO and the water interfaces. Multiple-shot laser ablation threshold of silicon is determined. Pulsed energy accumulation model is used to obtain the single-shot ablation threshold of silicon. The smaller ablation threshold value is found in the DMSO, and the incubation effect is also found to be absent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号