首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We have synthesized boron carbon nitride thin films by radio frequency magnetron sputtering. The films structure and composition were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The results indicate that the three elements of B, C, N are chemically bonded with each other and atomic-level hybrids have been formed in the films. The boron carbon nitride films prepared in the present experiment possess a disordered structure. The influence of PN2/PN2+Ar, total pressure and substrate bias voltage on the composition of boron carbon nitride films is investigated. The atomic fraction of C atoms increases and the fractions of B, N decrease with the decrease of PN2/PN2+Ar from 75% to 0%. There is an optimum total pressure. That is to say, the atomic fractions of B, N reach a maximum and the fraction of C atoms reaches a minimum at the total pressure of 1.3 Pa. The boron carbon nitride films exhibit lower C content and higher B, N contents at lower bias voltages. And the boron carbon nitride films show higher C content and lower B, N contents at higher bias voltages.  相似文献   

2.
FTIR法研究BCN薄膜的内应力   总被引:1,自引:0,他引:1  
采用射频磁控溅射技术,用六角氮化硼和石墨为溅射靶,以氩气(Ar)和氮气(N2)为工作气体,在Si(100)衬底上制备出硼碳氮(BCN)薄膜。利用傅里叶变换红外光谱(FTIR)考察了不同沉积参数(溅射功率为80~130 W、衬底温度为300~500 ℃、沉积时间为1~4 h)条件下制备的薄膜样品。实验结果表明,所制备薄膜均实现了原子级化合。并且沉积参数对BCN薄膜的生长和内应力有很大影响,适当改变沉积参数能有效释放BCN薄膜的内应力。在固定其他条件只改变一个沉积参数的情况下,得到制备具有较小内应力的硼碳氮薄膜的最佳沉积条件:溅射功率为80 W、衬底温度为400 ℃、沉积时间为2 h。  相似文献   

3.
Studying the surface properties of cubic boron nitride (c-BN) thin films is very important to making it clear that its formation mechanism and application. In this paper, c-BN thin films were deposited on Si substrates by radio frequency sputter. The influence of working gas pressure on the formation of cBN thin film was studied. The surface of c-BN films was analyzed by X-ray photoelectron spectroscopy (XPS), and the results showed that the surface of c-BN thin films contained C and O elements besides B and N. Value of N/B of c-BN thin films that contained cubic phase of boron nitride was very close to 1. The calculation based on XPS showed that the thickness of hexagonal boron nitride (h-BN) on the surface of c-BN films is approximately 0.8 nm.  相似文献   

4.
The stoichiometry of boron nitride (BN) films, which are deposited with self-bias-assisted radio frequency (rf) magnetron sputtering of a hexagonal boron nitride (hBN) target, has been investigated with Auger electron spectroscopy (AES) and the MCs+-mode of secondary ion mass spectroscopy (MCs+-SIMS) for the sake of a better understanding of the growth mechanism of cubic boron nitride (cBN). The cubic fraction of the films is determined with Fourier-transform infrared spectroscopy (FTIR). It is shown that full stoichiometry of the deposited films is decisive for cBN-growth. A substrate bias voltage can increase the N concentration of a growing film under N-deficient deposition conditions. This effect is shown to be temperature dependent. PACS 52.77.Dq; 81.15.Cd; 68.55.Nq  相似文献   

5.
TiO2 thin films were deposited onto quartz substrates by RF magnetron sputtering. The samples deposited at various RF powers and sputtering pressures and post annealed at 873 K, were characterized using X-ray diffraction (XRD), micro Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), UV-vis spectroscopy and photoluminescence (PL) spectroscopy. XRD spectrum indicates that the films are amorphous-like in nature. But micro-Raman analysis shows the presence of anatase phase in all the samples. At low sputtering pressure, increase in RF power favors the formation of rutile phase. Presence of oxygen defects, which can contribute to PL emission is evident in the XPS studies. Surface morphology is much affected by changes in sputtering pressure which is evident in the SEM images. A decrease in optical band gap from 3.65 to 3.58 eV is observed with increase in RF power whereas increase in sputtering pressure results in an increase in optical band gap from 3.58 to 3.75 eV. The blue shift of absorption edge in all the samples compared to that of solid anatase is attributed to quantum size effect. The very low value of extinction coefficient in the range 0.0544-0.1049 indicates the excellent optical quality of the samples. PL spectra of the films showed emissions in the UV and visible regions.  相似文献   

6.
The photoreflectance (PR) spectroscopy has been applied to investigate the band-gap energy (Eg) of indium nitride (InN) thin films grown by rf magnetron sputtering. A novel reactive gas-timing technique applied for the sputtering process has been successfully employed to grow InN thin films without neither substrate heating nor post annealing. The X-ray diffraction (XRD) patterns exhibit strong peaks in the orientation along (0 0 2) and (1 0 1) planes, corresponding to the polycrystalline hexagonal-InN structure. The band-gap transition energy of InN was determined by fitting the PR spectra to a theoretical line shape. The PR results show the band-gap energy at 1.18 eV for hexagonal-InN thin films deposited at the rf powers of 100 and 200 W. The high rf sputtering powers in combination with the gas-timing technique should lead to a high concentration of highly excited nitrogen ions in the plasma, which enables the formation of InN without substrate heating. Auger electron spectroscopy (AES) measurements further reveal traces of oxygen in these InN films. This should explain the elevated band-gap energy, in reference to the band-gap value of 0.7 eV for pristine InN films.  相似文献   

7.
Ultra-thin titanium and titanium nitride films on silicon substrate were obtained by ion beam sputtering of titanium target in vacuum and nitrogen atmosphere, using argon ions with energy of 5 keV and 15 μA target current. Elemental composition and chemical state of obtained films were investigated by X-ray photoelectron spectroscopy with using Mg-Kα X-ray radiation (photon energy 1253.6 eV). It was shown that it is possible to form both ultra-thin titanium films (sputtering in vacuum) and ultra-thin titanium nitride films (sputtering in nitrogen atmosphere) in the same temperature conditions. Photoelectron spectra of samples surface, obtained in different steps of films synthesis, detailed spectra of photoelectron emission from Si 2p, Ti 2p, N 1s core levels and also X-ray photoelectron spectra of Auger electrons emission are presented.  相似文献   

8.
Silicon carbon nitride thin films were deposited on Co-Cr alloy under varying deposition conditions such as sputtering power and the partial pressure ratio of N2 to Ar by radio frequency and direct current magnetron sputtering techniques. The chemical bonding configurations, surface topography and hardness were characterized by means of X-ray photoelectron spectroscopy, atomic force microscopy and nano-indentation technique. The sputtering power exhibited important influence on the film composition, chemical bonding configurations and surface topography, the electro-negativity had primary effects on chemical bonding configurations at low sputtering power. A progressive densification of the film microstructure occurring with the carbon fraction was increased. The films prepared by RF magnetron sputtering, the relative content of the Si-N bond in the films increased with the sputtering power increased, and Si-C and Si-Si were easily detachable, and C-O, N-N and N-O on the film volatile by ion bombardment which takes place very frequently during the film formation process. With the increase of sputtering power, the films became smoother and with finer particle growth. The hardness varied between 6 GPa and 11.23 GPa depending on the partial pressure ratio of N2 to Ar. The tribological characterization of Co-Cr alloy with Si-C-N coating sliding against UHMWPE counter-surface in fetal bovine serum, shows that the wear resistance of the Si-C-N coated Co-Cr alloy/UHMWPE sliding pair show much favourable improvement over that of uncoated Co-Cr alloy/UHMWPE sliding pair. This study is important for the development of advanced coatings with tailored mechanical and tribological properties.  相似文献   

9.
BCxN薄膜的紫外透过光谱研究   总被引:1,自引:1,他引:0  
利用射频磁控溅射方法以不同的溅射功率(80~130 W)制备出具备紫外增透性能的BCN,BC2N和BC3N薄膜.傅里叶红外吸收光谱和X射线光电子能谱测量发现样品的组成原子之间均实现了原子级化合.溅射功率对薄膜的组分和紫外增透性能有很大影响,其通过改变薄膜组分而影响紫外增透性能,且碳原子数小的样品紫外增透性能好.以110 W条件下制备的BCN薄膜中碳原子数最小,它的紫外增透性能最好,在200~350 nm波段附近平均透过率比玻璃提高了将近40%.  相似文献   

10.
A novel approach was investigated to obtain the superhydrophobicity on surfaces of boron nitride films. In this method boron nitride films were deposited firstly on Si(1 0 0) and quartz substrate using a radio frequency (RF) magnetron sputtering system, and then using CF4 plasma treatment, the topmost surface area can be modified systematically. The results have shown that the water contact angle on such surfaces can be tuned from 67° to 159°. The films were observed to be uniform. The surfaces of films consist of micro-features, which were confirmed by Atomic Force Micrograph. The chemical bond states of the films were determined by Fourier Transform Infrared (FTIR) Spectroscopy, which indicate the dominance of B-N binding. According to the X-ray Photoelectron Spectroscopy analysis, the surface of film is mainly in BN phase. The micro-feature induced surface roughness is responsible for the observed superhydrophobic nature. The water contact angles measured on these surfaces can be modeled by the Cassie's formulation.  相似文献   

11.
丁万昱  徐军  李艳琴  朴勇  高鹏  邓新绿  董闯 《物理学报》2006,55(3):1363-1368
利用微波ECR磁控反应溅射法在室温下制备无氢SiNx薄膜.通过傅里叶红外光谱 、X射线电子谱、膜厚仪、纳米硬度仪、原子力显微镜等分析手段,分析了N2流 量、Si靶溅射功率等实验参数对SiNx薄膜结构、化学配比以及机械性质的影响. 结果表明,SiNx薄膜中Si-N结构、化学配比及机械性质与等离子体中的Si元素 含量关系密切,随着N2流量的增加或者Si靶溅射功率的降低,等离子体中的Si 元素含量降低,SiNx薄膜结构、化学配比及硬度发生变化,红外光谱发生偏移 ,硬度下降,沉积速率降低. 关键词: x')" href="#">SiNx 磁控溅射 傅里叶变换红外吸收光谱 X射线电子谱  相似文献   

12.
Tantalum nitride films (TaN) were synthesized by microwave ECR-DC sputtering. The effects of deposition and annealing temperature on mechanical properties of TaN films were investigated. Cross-section pattern, microstructure and binding energy of the films were investigated by scanning electron microscope (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. Mechanical properties were evaluated using nano-indentation and scratch tester. The results showed that the maximal hardness value of approximately 40 GPa was deposited in the TaN sample at 573 K. While the preparation temperature decreased, the hardness, modulus and adhesion of TaN film also decreased. Hardness and modulus also decreased with the increase in annealing temperature. Meanwhile the adhesion strength was also sensitive to the annealing temperature, with a maximum adhesion strength of 40 N measured in the TaN film annealed at 448 K. The results demonstrated that a desirable mechanical property of TaN films deposited by DC reactive magnetron sputtering can be obtained by controlling the deposition and annealing temperature.  相似文献   

13.
Polycrystalline Ni-Mn-Ga thin films were deposited by the d.c. magnetron sputtering on well-cleaned substrates of Si(1 0 0) and glass at a constant sputtering power of 36 W. We report the influence of sputtering pressure on the composition, structure and magnetic properties of the sputtered thin films. These films display ferromagnetic behaviour only after annealing at an elevated temperature and a maximum saturation magnetization of 335 emu/cc was obtained for the films investigated. Evolution of martensitic microstructure was observed in the annealed thin films with the increase of sputtering pressure. The thermo-magnetic curves exhibited only magnetic transition in the temperature range of 339-374 K. The thin film deposited at high sputtering pressure of 0.025 mbar was found to be ordered L21 austenitic phase.  相似文献   

14.
GaN films were deposited on Si (111) substrates by middle-frequency magnetron sputtering. X-ray diffraction revealed preferential GaN (0 0 0 2) orientation normal to the substrate surface for all the films deposited. The diffraction intensity and N contents were found to depend strongly on the total gas pressure. Good quality films were only obtained at pressures in the range of 0.4-1.0 Pa. Little diffraction of GaN (0 0 0 2) could be observed either at total pressures below 0.4 Pa or above 1.0 Pa. The GaN films produced under the optimized conditions have an N:Ga ratio of 1:1 as determined by energy-dispersive X-ray spectroscopy.  相似文献   

15.
The (1 0 3)-oriented aluminum nitride (AlN) thin film is an attractive piezoelectric material for the applications in surface acoustic wave and film bulk acoustic wave resonator devices. In this work, we repot structural and mechanical characteristics of (1 0 3) AlN thin films deposited onto (1 0 0) Si substrates with radio frequency magnetron sputtering at different sputtering powers at 150, 250, and 350 W. Comparisons were made on their crystalline structures with X-ray diffraction, surface morphologies with atomic force microscopy, mechanical properties with nanoindentation, and tribological responses with nanoscratch. Results indicate that for the sputtering power of 350 W, a high-quality (1 0 3) AlN thin film, whose hardness is 18.91 ± 1.03 GPa and Young's modulus is 242.26 ± 8.92 GPa, was obtained with the most compact surface condition.  相似文献   

16.
ZnO thin films with different thickness (the sputtering time of ZnO buffer layers was 10 min, 15 min, 20 min, and 25 min, respectively) were first prepared on Si substrates using radio frequency magnetron sputtering system and then the samples were annealed at 900 °C in oxygen ambient. Subsequently, a GaN epilayer about 500 nm thick was deposited on ZnO buffer layer. The GaN/ZnO films were annealed in NH3 ambient at 950 °C. X-ray diffraction (XRD), atom force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) were used to analyze the structure, morphology, composition and optical properties of GaN films. The results show that their properties are investigated particularly as a function of the sputtering time of ZnO layers. For the better growth of GaN films, the optimal sputtering time is 15 min.  相似文献   

17.
Amorphous carbon nitride (a-CNx) thin films have been synthesised by three different deposition techniques in an Ar/N2 gas mixture and have been deposited by varying the percentage of nitrogen gas in the mixture (i.e. the N2/Ar + N2 ratio) from 0 to 10%. The variation of the electrical conductivity and the gap values of the deposited films versus the N2/Ar + N2 ratio were investigated in relation with their local microstructure. Film composition was analysed using Raman spectroscopy and optical transmission experiments. The observed variation of electrical conductivity and optical properties are attributed to the changes in the atomic bonding structures, which were induced by N incorporation, increasing both the sp2 carbon content and their relative disorder. The low N content samples seem to be an interesting material to produce films with interesting properties for optoelectronic applications considering the facility to control the gas composition as a key parameter.  相似文献   

18.
Zinc nitride films were prepared on quartz substrates by rf magnetron sputtering using pure zinc target in N2-Ar plasma. X-ray diffraction (XRD) analysis indicates that the films just after deposition are polycrystalline with a cubic structure and a preferred orientation of (4 0 0). X-ray photoelectron spectroscopy (XPS) analysis also confirms the formation of N-Zn bonds and the substitution incorporation of oxygen for nitrogen on the surface of the films. The optical band gap is calculated from the transmittance spectra of films just after deposition, and a direct band gap of 1.01 ± 0.02 eV is obtained. Room temperature PL measurement is also performed to investigate the effect of defect on the band gap and quality of the zinc nitride films.  相似文献   

19.
The a-C:H and a-C:NX:H films were deposited onto silicon wafers using radio frequency (rf) plasma enhanced chemical vapor deposition (PECVD) and pulsed-dc glow discharge plasma CVD, respectively. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to characterize chemical nature and bond types of the films. The results demonstrated that the a-C:H film prepared by rf-CVD (rf C:H) has lower ID/IG ratio, indicating smaller sp2 cluster size in an amorphous carbon matrix. The nitrogen concentrations of 2.9 at.% and 7.9 at.% correspond to carbon nitride films prepared with rf and pulse power, respectively.Electrochemical corrosion performances of the carbon films were investigated by potentiodynamic polarization test. The electrolyte used in this work was a 0.89% NaCl solution. The corrosion test showed that the rf C:H film exhibited excellent anti-corrosion performance with a corrosion rate of 2 nA cm−2, while the carbon nitride films prepared by rf technique and pulse technique showed a corrosion rate of 6 nA cm−2 and 235 nA cm−2, respectively. It is reasonable to conclude that the smaller sp2 cluster size of rf C:H film restrained the electron transfer velocity and then avoids detriment from the exchange of electrons.  相似文献   

20.
傅广生  于威  王淑芳  李晓苇  张连水  韩理 《物理学报》2001,50(11):2263-2268
利用直流辉光放电等离子体辅助的脉冲激光沉积技术在Si衬底上生长了碳氮薄膜.通过扫描电子显微镜、X射线衍射、X射线光电子能谱、俄歇电子能谱等多种手段,对薄膜的形貌、成分、晶体结构、价键状态等特性进行了分析和确定.结果表明,沉积薄膜为含有非晶SiN和晶态氮化碳颗粒结构,晶态成分呈多晶态,主要为α-C3N4相、β-C3N4相,晶粒大小为40—60nm.碳氮之间主要以C-N非极性共价键形式相结合. 关键词: 脉冲激光沉积 直流辉光放电 碳氮薄膜  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号