首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of polycrystalline Ag-doped Ni1−xAgxO/Ni bilayers with x up to 0.2 were prepared by magnetron sputtering. X-ray diffraction, atomic force microscopy and transmission electron microscopy analyses reveal that Ag doping significantly reduces the mean NiO grain size and leads to the appearance of Ag nanoparticles on the surface of the Ag-doped NiO films. As x increases, the exchange bias field and coercivity at room temperature decrease as a consequence of the reduced thermal stability of smaller NiO grains and the screening effect resulting from the interfacial Ag nanoparticles. At lower temperatures, a slight enhancement of the exchange bias field is observed in the Ag-doped sample, indicating that the Ag doping increases the uncompensated NiO spin density. In addition, our studies find that the training effect of the Ag-doped sample can be well described by a spin configurational relaxation model, regardless of the presence of Ag nanopartiles at the interface.  相似文献   

2.
Monte Carlo simulations have been used to study the relationship between the exchange bias properties and the interface roughness in coupled ferromagnetic/antiferromagnetic (FM/AFM) films of classical Heisenberg spins. It is shown that the variation of the exchange bias field versus the AFM anisotropy strongly depends on the FM/AFM interface. Unlike the flat interface, a non-monotonic dependence is observed for the roughest FM/AFM interface. This is explained by canted magnetic configurations at the FM/AFM interface, which appear after the first reversal due to the magnetic frustration. The temperature dependence of the exchange field is also dependent on the roughness. While the exchange field is roughly constant for the flat interface, a decrease is observed for the roughest interface as the temperature increases. This has been interpreted as a significant decrease of the effective coupling between the FM and the AFM due to the disordering of the moments at the FM/AFM interface because of the combination of magnetic frustration and temperature activation.  相似文献   

3.
4.
Ion bombardment induced magnetic patterning (IBMP) was used to write in-plane magnetized micro and submicron patterns in exchange biased magnetic bilayers, where the magnetization directions of the adjacent patterns are antiparallel to each other in remanence. These magnetic patterns were investigated by non-contact magnetic force microscopy (MFM). It is shown that the recorded MFM images of the IBMP patterns in two exemplarily chosen standard layer systems (NiFe (4.8 nm)/NiO (68 nm) and Co (4.8 nm)/NiO (68 nm)) can be well described by a model within the point-dipole approximation for the tip magnetization. For 5 and 0.9 μm wide bar patterns the domain wall widths between adjacent magnetically patterned areas were determined to a≈1 μm. The minimum magnetically stable pattern width was estimated to be 0.7 μm in the standard system Co (4.8 nm)/NiO (68 nm).  相似文献   

5.
We consider the models of ferromagnetic (FM)/antiferromagnetic (AFM) bilayers and trilayers and perform a modified Monte Carlo method to study their exchange bias (EB) properties at low temperature after field cooling on increasing one component thickness at the expense of the other one. The results indicate that EB is insensitive to the thickness variations as the FM layer is thicker than the AFM one. Otherwise, it has a steep increase with the decrease of FM thickness, but the purely inverse proportion is no longer valid due to the dual influences of FM and AFM thicknesses. EB in trilayers should be approximately twice larger than that in bilayers because there is a double interfacial area in the trilayers compared with the bilayers, but the dispersed FM/AFM distributions may break this relation as a result of thermal destabilization. Moreover, EB is independent of FM/AFM stacking sequences probably because of the ideal interface between them. It has been clarified unambiguously that such control of EB through varying the FM/AFM dimensions in heterostructures is attractive for spintronics applications.  相似文献   

6.
Training effects in a new class of exchange biased ferromagnet/antiferromagnet/ferromagnet trilayers (Co/NiO/[Co/Pt]3) with mutually orthogonal easy axes have been measured and successfully modeled. Previous experiments have demonstrated an enhanced blocking temperature as well as the ability to isothermally field tune the magnitude of the room temperature in-plane exchange bias. These effects have been attributed to the presence of the [Co/Pt] multilayer with perpendicular magnetic anisotropy, which variably pins the backside NiO domains. Here we show that the tuning of the exchange bias and the blocking temperature enhancement are highly dependent on both the temperature and the in-plane remanence of the normally out-of-plane [Co/Pt] multilayer, achieved using modest in-plane set fields. Training effects and their dependence on temperature and in-plane remanence are modeled using a thermodynamic approach. The in-plane remanence of the [Co/Pt] acts only to set the equilibrium exchange bias value and sets the scale for the blocking temperature; it has no effect on the training. We conclude that training effects occur only at the Co/NiO interface and that the relaxation towards equilibrium is confined to this interface. The field enhanced blocking temperature and isothermal tuning of exchange bias in these magnetic heterostructures with mutually orthogonal easy axes could play a role in the enhancement of exchange bias effects in future spin-valve devices. A thorough knowledge of the training effects is essential to account for the fundamental relaxation mechanisms that occur with repeated field cycling.  相似文献   

7.
A significant exchange bias(EB) training effect has been observed in sputter deposited FeAu/FeNi bilayers, wherein the exchange field(HE) exhibits a special sign-changeable temperature dependence. Very interestingly, despite the absence of multiple easy axes in the FeAu spin glass(SG) layer, HEdrops abruptly between the first and second magnetic cycles,which is followed by a more gradual continuous change in the subsequent cycles. This training behavior cannot be described by the empirical n-1/2law because of the asymmetric magnetization reversal processes. We propose modifying Binek’s model to include the asymmetric changes of the pinning SG spins at the descending and ascending branches. This new model successfully describes the EB training effect in FeAu/FeNi bilayers.  相似文献   

8.
For the ferromagnetic (FM)/antiferromagnetic (AFM) bilayers, both negative and positive exchange bias HE have been observed for low and high cooling field HCF, respectively. The thickness dependence of HE and coercivity HC have been investigated for the cases of negative and positive HE. It is found that the negative HE and the positive one have similar FM thickness dependence that is attributed to the interfacial nature of exchange bias. However, the AFM thickness dependence of positive HE is completely contrary to that of the negative one, which clearly demonstrates that the AFM spins play different roles for the cases of positive and negative HE. In particular, the AFM thickness of positive HE was first highlighted by an AFM spin canting model. These results should be attributed to the interfacial spin configuration after field cooling procedure.  相似文献   

9.
The magnitude of the exchange bias (EB) effect in nanogranular Ni/NiO samples (with Ni content between about 4 and 69 wt% and mean size of the Ni crystallites of the order of 10 nm) has been found to be strictly related to the increase in the remanent magnetization measured after field-cooling, with respect to the value after zero-field-cooling, normalized to the saturation magnetization. This allows describing the EB mechanism in terms of the fraction of the magnetic moments of the Ni nanocrystallites that irreversibly has aligned in the field direction during field-cooling, due to the exchange anisotropy, and that is effectively involved in the loop shift. Hence, the possibility of tuning EB by controlling the field-cooled remanent magnetic state is shown.  相似文献   

10.
We study magnetic hysteresis loops after field cooling of a CoO/Co bilayer by MOKE and polarized neutron reflectivity. The neutron scattering reveals that the first magnetization reversal after field cooling is dominated by domain wall movement, whereas all subsequent reversals proceed essentially by rotation of the magnetization. In addition, off-specular diffuse scattering indicates that the first magnetization reversal induces an irreversible change of the domain state in the antiferromagnet.  相似文献   

11.
NiO/Co and NiO/Ni80Fe20 bilayers were prepared at 293 onto SiO2(1 0 1)/Si(1 1 1) and glass substrates using UHV (5×10−10 mbar) RF/DC magnetron sputtering. Results on magnetic measurements showed that the exchange biasing and coercive fields are inversely proportional to the Co and Ni80Fe20 (Py) layer thickness down to 2 nm. A maximal RT coupling energy for the NiO–Co and NiO–Py interface was estimated as 0.04 and 0.03 mJ/m2 for the samples prepared onto SiO2(1 0 1)/Si(1 1 1) substrates.  相似文献   

12.
In this paper we provide a review and overview of a series of works generated in our laboratory over the last 5 years. These works have described the development and evolution of a new paradigm for exchange bias in polycrystalline thin films with grain sizes in the range 5-15 nm. We have shown that the individual grains in the antiferromagnetic (AF) layer of exchange bias systems contain a single AF domain and reverse over an energy barrier which is grain volume dependent. We show that the AF grains are not coupled to each other and behave independently. Understanding this process and using designed measurement protocols has enabled us to determine unambiguously the blocking temperature distribution of the AF grains, the anisotropy constant (KAF) of the AF, understand the AF grain-setting process, and predict its magnetic viscosity. We can explain and predict the grain size and film thickness dependence of the exchange field Hex. We have also studied interfacial effects and shown that there are processes at the interface, which can occur independently of the bulk of the AF grains. We have seen these effects via studies of trilayers and also via the field dependence of the setting process which does not affect the blocking. From separate experiments we have shown that the disordered interfacial spins exist as spin clusters analogous to a spin glass. These clusters can order spontaneously at low temperatures or can be ordered by the setting field. We believe it is the degree of order of the interfacial spins that gives rise to the coercivity in exchange bias systems. Based on this new understanding of the behaviour of the bulk of the grains in the antiferromagnet and the interfacial spins we believe that we have now a new paradigm for the phenomenon of exchange bias in sputtered polycrystalline thin films. We emphasize that the phenomenological model does not apply to core-shell particles, epitaxial single-crystal films and large grain polycrystalline films.  相似文献   

13.
The structure dependence of exchange bias in ferromagnetic/antiferromagnetic (FM/AF) bilayers has been investigated in detail by extending Slonczewski's 'proximity magnetism' idea. Here three important parameters are discussed for FM/AF bilayers, i.e. interracial bilinear exchange coupling J1, interracial biquadratic (spin-flop) exchange coupling J2 and antiferromagnetic layer thickness tAF. The results show that both the occurrence and the variety of the exchange bias strongly depend on the above parameters. More importantly, the small spin-flop exchange coupling may result in an exchange bias without the interracial bilinear exchange coupling. However, in general, the spin-flop exchange coupling cannot result in the exchange bias. The corresponding critical parameters in which the exchange bias will occur or approach saturation are also presented.  相似文献   

14.
For FeNi/FeMn bilayers, the angular dependence of exchange bias shows hysteresis between clockwise and counterclockwise rotations, as a new signature. The hysteresis decreases for thick antiferromagnet layers. Calculations have clearly shown that the orientation of antiferromagnet spins also exhibits hysteresis between clockwise and counterclockwise rotations. This furnishes an interpretation of the macroscopic behavior of the ferromagnetic layer in terms of the thermally driven evolution of the magnetic state of the antiferromagnet layer.  相似文献   

15.
段寒凝  袁松柳  郑先锋  田召明 《中国物理 B》2012,21(7):78101-078101
Monodisperse NiO nanocrystals with an average particle size of 3 ± 0.4 nm are successfully synthesized by the thermal decomposition of Ni-oleylamine complex in an organic solvent under a continuous O2 flux. The crystalline structure and the morphology of the product are investigated by X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy. Magnetization and alternating-current (ac) susceptibility measurements indicate that the structure of the particles can be considered as consisting of an antiferromagnetically ordered core and a spin-glass-like surface shell. In addition, both the exchange bias field and the vertical magnetization shift can be observed in this system at 10 K after field cooling. This observed exchange bias effect is explained in terms of the exchange interaction between the antiferromagnetic core and the spin-glass-like shell.  相似文献   

16.
李岩  陈庆永  姜宏伟  王艾玲  郑鹉 《物理学报》2006,55(12):6647-6650
采用磁控溅射的方法制备了一组以(Ni0.81Fe0.19)1-xCrx作为缓冲层的NiFe/PtMn双层膜样品,研究了NiFe/PtMn双层膜的形成过程和热稳定性.实验表明,Cr成分的不同会引起NiFe/PtMn双层膜中PtMn层晶粒尺寸的不同,使NiFe/PtMn双层膜的交换偏置场与PtMn层厚度之间呈现不同的变化关系.热稳定性实验表明,PtMn晶粒尺寸较大的样品,出现交换偏置现象所需要的临界厚度较小,热稳定性好,这与Mauri的理论模型一致. 关键词: NiFe/PtMn双层膜 交换偏置场 热稳定性  相似文献   

17.
外应力场下铁磁/反铁磁双层膜系统中的交换偏置   总被引:1,自引:0,他引:1       下载免费PDF全文
潘靖  陶永春  胡经国 《物理学报》2006,55(6):3032-3037
采用自由能极小的方法研究了铁磁/反铁磁双层膜系统在外应力场下的交换各向异性.本模型中铁磁层具有单轴磁晶各向异性和立方磁晶各向异性,而反铁磁层仅具有单轴磁晶各向异性,但其厚度趋于半无穷.理论上解析地给出了系统的等效交换偏置和钉扎角(它显示了反铁磁层对铁磁层磁化的钉扎作用)与外应力场之间的关系.数值计算表明:系统的等效交换偏置与外磁场的方向有关,而与其大小无关;然而外应力场的大小和方向均对系统的等效交换偏置有影响,其根源在于外应力场的大小和方向都影响着钉扎角. 关键词: 铁磁/反铁磁双层膜 交换偏置 钉扎角 应力场  相似文献   

18.
The exchange-bias (EB) properties of Mg-diluted Ni1−xMgxO/Ni (0?x?0.3) granular systems have been investigated. Magnetic dilution with Mg greatly affects the EB field and the coercivity. The temperature dependence of the EB field and the coercivity can be explained in terms of formation of domain states. The value of the EB field increases and shows a maximum value with increasing cooling field, which can be explained by the competition between the field-dependent Zeeman energy and the exchange interaction at the interface.  相似文献   

19.
We have theoretically analyzed the long-range exchange bias between a ferromagnet and an antiferromagnet separated by a nonmagnetic metal spacer. The Fermi–Dirac distribution was included in the Ruderman–Kittel–Kasuya–Yosida interaction to study the thermal effects of the conduction electrons, and thus to study the temperature effects and thickness dependence in the trilayer structure. The experimentally observed oscillatory exchange bias through the metal spacer is in good agreement with the calculated results.  相似文献   

20.
研究了在铁磁(NiFe)/反铁磁(FeMn)双层膜之间,交换偏置的形成过程和热稳定性,特别是NiFe/FeMn的交换偏置作用与FeMn层晶粒尺寸的关系.和以前作者不同的是,本文方法采用非磁性Ni-Fe-Cr合金作缓冲层材料,改变Cr的含量就可以获得不同晶粒尺寸的反铁磁FeMn层.实验表明,晶粒尺寸较小的FeMn产生较强的铁磁/反铁磁交换偏置场;但是,对于较大晶粒的FeMn层,出现交换偏置作用所要的临界厚度较小.这符合Mauri提出的理论模型.交换偏置场的热稳定性实验表明,具有较大晶粒尺寸的FeMn层给出较 关键词: 交换偏置 热稳定性 反铁磁 晶粒尺寸  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号