首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MnxGe1−x thin films were prepared by magnetron sputtering with a substrate temperature of 673 K and subsequently annealed at 873 K. The X-ray diffraction (XRD) measurements showed that all samples had a single Ge cubic structure. No films showed clear magnetic domain structure under a magnetic force microscope (MFM). Atom force microscope (AFM) measurements showed that the films had an uniform particle size distribution, and a columnar growth pattern. X-ray photoelectron spectroscopy (XPS) measurements indicated that the valences of both Mn and Ge atoms increase with the Mn concentration. The resistance decreased with increasing temperature, suggesting that the films were typical semiconductors. Magnetic measurements carried out using a Physical Property Measurement System (PPMS) showed that all samples exhibited ferromagnetism at room temperature. There was a small concentration of Mn11Ge8 in the films, but the ferromagnetism was mainly induced by Mn substitution for Ge site.  相似文献   

2.
Ferromagnetic Ga1−xMnxAs layers (where x≈4.7–5.5%) were grown on (1 0 0) GaAs substrates by molecular beam epitaxy. These p-type (Ga,Mn)As films were revealed to have a ferromagnetic structure and ferromagnetism is observed up to a Curie temperature of 318 K, which is ascribed to the presence of MnAs secondary magnetic phases within the film. It is highly likely that the phase segregation occurs due to the high Mn cell temperature around 890–920 °C, as it is well established that GaMnAs is unstable at such a high temperature. The MnAs precipitate in the samples with x≈4.7–5.5% has a Curie temperature Tc≈318 K, which was characterized from field-cooled and zero-field-cooled magnetization curves.  相似文献   

3.
Using Mn+ implantation following ion beam-induced epitaxial crystallization (IBIEC) annealing, high Curie temperature ferromagnetic (Ga,Mn)As thin film was fabricated. The crystalline quality of the Mn+ implanted layer was identified by X-ray diffraction (XRD) and transmission electron microscopy (TEM). A clear ferromagnetic transition at Tc 253 K was observed by magnetization vs. temperature measurement. We infer that IBIEC treatment is a useful method not only for the low-temperature annealing of (Ga,Mn)As thin films but also for other dilute magnetic semiconductor (DMS) samples.  相似文献   

4.
We present the room-temperature ferromagnetism in the (Ga,Mn)N films grown on n-type GaN templates by plasma-enhanced molecular beam epitaxy for semiconductor spintronic device applications. Despite of the possible interface effects between the (Ga,Mn)N layers and n-type GaN templates, the (Ga,Mn)N films were found to exhibit the ferromagnetic ordering above room temperature. The magnetic force microscopy identified the magnetic domains with the different magnetic orientations at room temperature, indicating the existence of the ferromagnetic long-range ordering. In Raman spectra, an additional peak at 578 cm−1 was observed, which is attributed to the local vibration of substitutional Mn in the (Ga,Mn)N lattice. Therefore, it is believed that the ferromagnetic ordering in (Ga,Mn)N is due to the carrier-mediated Ruderman-Kittle-Kasuya-Yosida interaction.  相似文献   

5.
Magnetic properties of amorphous Ge1−xMnx thin films were investigated. The thin films were grown at 373 K on (100) Si wafers by using a thermal evaporator. Growth rate was ∼35 nm/min and average film thickness was around 500 nm. The electrical resistivities of Ge1−xMnx thin films are 5.0×10−4∼100 Ω cm at room temperature and decrease with increasing Mn concentration. Low temperature magnetization characteristics and magnetic hysteresis loops measured at various temperatures show that the amorphous Ge1−xMnx thin films are ferromagnetic but the ferromagnetic magnetizations are changing gradually into paramagnetic as increasing temperature. Curie temperature and saturation magnetization vary with Mn concentration. Curie temperature of the deposited films is 80-160 K, and saturation magnetization is 35-100 emu/cc at 5 K. Hall effect measurement at room temperature shows the amorphous Ge1−xMnx thin films have p-type carrier and hole densities are in the range from 7×1017 to 2×1022 cm−3.  相似文献   

6.
Fe50Co50 thin films with thickness of 30 and 4 nm have been produced by rf sputtering on glass substrates, and their surface has been observed with atomic force microscopy (AFM) and magnetic force microscopy (MFM); MFM images reveal a non-null component of the magnetization perpendicular to the film plane. Selected samples have been annealed in vacuum at temperatures of 300 and 350 °C for times between 20 and 120 min, under a static magnetic field of 100 Oe. DC hysteresis loops have been measured with an alternating gradient force magnetometer (AGFM) along the direction of the field applied during annealing and orthogonally to it. Samples with a thickness of 4 nm display lower coercive fields with respect to the 30 nm thick ones. Longer annealing times affect the development of a harder magnetic phase more oriented off the film plane. The field applied during annealing induces a moderate magnetic anisotropy only on 30 nm thick films.  相似文献   

7.
Heat capacity study was performed, for the first time, for [MnF4TPP][TCNE]·0.5MeOH and [Mn(OC14H29)4TPP][TCNE]·MeOH complexes in the 1.8-100 K temperature range under the 0-9 T magnetic field and disclosed new aspects inherent in such strongly coupled charge-transfer Mn-porphyrin-TCNE linear chain systems, where TPP=5,10,15,20-tetraphenylporphyrinato, TCNE=tetracyanoethylene and MeOH=methanol. Any heat capacity anomaly due to the onset of the magnetic long-range-order was not detected, whereas the magnetic phase transition has clearly been observed around 20 K by previous magnetic studies. As these materials are well approximated by quasi-one-dimensional ferrimagnetic Heisenberg chains with very large intrachain spin-spin interactions, the most part of the magnetic entropy is retained above the phase transition temperature as the dominant short-range order. This is the reason why no magnetic phase transition was detected by calorimetry. On the other hand, the big effect observed in the magnetic susceptibility is well accounted for if the formation of magnetic domains is assumed in the crystal.  相似文献   

8.
We report on laser synthesis of thin 30–200 nm epitaxial layers with mosaic structure of diluted magnetic semiconductors GaSb:Mn and InSb:Mn with the Curie temperature TC above 500 K and of InAs:Mn with TC no less than 77 K. The concentration of Mn was ranged from 0.02 to 0.15. In the case of InSb:Mn and InAs:Mn films, the additional pulse laser annealing was needed to achieve ferromagnetic behavior. We used Kerr and Hall effects methods as well as ferromagnetic resonance (FMR) spectroscopy to study magnetic properties of the samples. The anisotropy FMR was observed for both layers of GaSb:Mn and InSb:Mn up to 500 K but it takes place with different temperature dependencies of absorption spectra peaks. The resonance field value and amplitude of FMR signal on the temperature is monotonically decreased with the temperature increase for InSb:Mn. In the case of GaSb:Mn, this dependence is not monotonic.  相似文献   

9.
The temperature dependence of electrical conductivity and magnetoconductivity of new type of carbon films composed of nanosize thin graphite-like crystallites were investigated at temperature interval of 4.2-300 K and in the magnetic field range of 0-12 kG at 4.2 K, respectively. The crystallites consist of several (5-50) graphene layers which have predominant orientation perpendicularly to a film surface. At temperature ≤30 K the logarithmic conductivity decreases linearly with temperature. The positive magnetoconductivity of the films was observed in a magnetic field directed perpendicularly to the film surface in all intervals of field values. In magnetic field B≥4 kG the logarithmic asymptotic of conductivity from magnetic field was observed. That is characteristic of the systems with two-dimensional quantum corrections to magnetoconductivity. In a magnetic field directed along a film surface, the crossover from negative to positive magnetoresistivity is observed at B≥8 kG.  相似文献   

10.
The dependence of magnetic properties of GaAs:Mn and MnAs epitaxial films grown on GaAs (001) by laser ablation of Mn and undoped GaAs in a hydrogen atmosphere under the growth conditions has been studied by magnetic force microscopy (MFM). Magnetic probe calibration for quantitative MFM measurements was performed by scanning across the slit of the magnetic-head of a tape recorder through which controlled direct current was passed. The dipole approximation was used to describe the magnetic properties of the MFM probe. Nonuniformity of the magnetization of GaAs:Mn films related to the formation of MnAs nanoinclusions, which are ferromagnetic at 300 K, has been observed. The typical scales of the spatial nonuniformity of the magnetization of GaAs:Mn films were varied from 270 to 550 nm depending on the film-growth conditions. The MnAs phase was identified by MFM measurements at an elevated temperature (up to 80°N).  相似文献   

11.
Temperature and field-dependent magnetization measurements on polycrystalline CeMnCuSi2 reveal that the Mn moments in this compound exhibit ordering with a ferromagnetic (FM) component ordered instead of the previously reported purely antiferromagnetic (AFM) ordering. The FM ordering temperature, Tc, is about 120 K and almost unchanged with external fields up to 50 kOe. Furthermore, an AFM component (such as in a canted spin structure) is observed to be present in this phase, and its orientation is modified rapidly by the external magnetic field. The Ce L3-edge X-ray absorption result shows that the Ce ions in this compound are nearly trivalent, very similar to that in the heavy fermion system CeCu2Si2. Large thermomagnetic irreversibility is observed between the zero-field-cooled (ZFC) and field-cooled (FC) M(T) curves below Tc indicating strong magnetocrystalline anisotropy in the ordered phase. At 5 K, a metamagnetic-type transition is observed to occur at a critical field of about 8 kOe, and this critical field decreases with increasing temperature. The FM ordering of the Mn moments in CeMnCuSi2 is consistent with the value of the intralayer Mn–Mn distance RaMn–Mn=2.890 Å, which is greater than the critical value 2.865 Å for FM ordering. Finally, a magnetic phase diagram is constructed for CeMnCuSi2.  相似文献   

12.
We present herein a comparison of the magnetic properties of bulk ceramics and thin films of the ferrimagnetic ErCo0.50Mn0.50O3 compound. Epitaxial thin films were deposited onto (1 0 0) SrTiO3 substrates by pulsed-laser ablation while bulk ceramics were prepared by solid state reaction. When cooling under low applied fields, a spin reversal is observed in both thin film and bulk due to the competition between two magnetic sublattices (Co/Mn and Er) coupled by a negative exchange interaction. Original features are observed in the M(H) loops for bulk materials: abrupt jumps at 4 T due to a reorientation of domains, while in the low field region, the increasing and decreasing branches of the magnetization intersect each other. In the thin film, the ordering temperature increased from 69 to 75 K, and the ZFC anomaly (AF transition) became sharper, compared to the bulk specimen. The oxygen content and the microstructure are crucial to observe the intersection of the magnetization branches.  相似文献   

13.
FeNiN thin films with good soft magnetic properties were synthesized on Si (1 0 0) substrates at 473 K by RF magnetron sputtering. The dependence of phase structure and magnetic properties on nitrogen partial pressure, nickel concentrations, film thickness and substrate temperature were systematically investigated. The phase evolution from α-(Fe,Ni)N to ξ-(Fe,Ni)2N with increase of nitrogen partial pressure was seen. The addition of Ni caused FeNiN films to turn from BCC structure to FCC structure. Clear reproducible striped domains appeared at the film surfaces when XNi=19.6%, which is explained by the high enough perpendicular anisotropy and the small stress in the film. All films show smooth surfaces and good soft magnetic properties compared to corresponding FeN compounds. The magnetic properties depended dramatically on the phase structure. Optimum soft magnetic properties with HC of <1 Oe are obtained between 5.0%?XNi?10.0%.  相似文献   

14.
The magnetic and structural properties of Fe ion-implanted GaN was investigated by various measurements. XRD results did not show any peaks associated with second phase formation. The magnetization curve at 5 K showed ferromagnetic behavior for 900 °C-annealed sample. In zero-field-cooled (ZFC) and field-cooled (FC) magnetization measurements, the irreversibility and a cusp-like behavior of the ZFC curve were observed for 900 °C-annealed sample. These behaviors are typically observed in superparamagnetic or spin glass phase. While the temperature dependence magnetization of 800 °C-annealed sample showed non-Brillouin-like curve and it is not exhibited ferromagnetic hysteresis at 5 K. In XPS measurement, the coexistence of metallic Fe (Fe0) and Fe–N bond (Fe2+ and Fe3+) for Fe 2p core level spectra is observed in as-implanted sample. But 700–900 °C-annealed samples showed only Fe–N bond (Fe2+ and Fe3+) spectra. For Ga 3d core level spectra only Ga–N bonds showed for as implanted with 700–900 °C-annealed samples. From XPS results, it could be explained that magnetic property of our films originated from FeN structures.  相似文献   

15.
Magnetization and susceptibility were investigated as a function of temperature and magnetic field in polycrystalline Mn[Cr0.5Ga1.5]S4 spinel. The dc susceptibility measurements at 919 Oe showed a disordered ferrimagnetic behaviour with a Curie-Weiss temperature θCW=−55 K and an effective magnetic moment of 5.96 μB close to the spin-only value of 6.52 μB for Cr3+ and Mn2+ ions in the 3d3 and 3d5 configurations, respectively. The magnetization measured at 100 Oe revealed the multiple magnetic transitions with a sharp maximum at the Néel temperature TN=3.9 K, a minimum at the Yafet-Kittel temperature TYK=5 K, a broad maximum at the freezing temperature Tf=7.9 K, and an inflection point at the Curie temperature TC=48 K indicating a transition to paramagnetic phase. A large splitting between the zero-field-cooled (ZFC) and field-cooled (FC) magnetizations at a temperature smaller than TC suggests the presence of spin-glass-like behaviour. This behaviour is considered in a framework of competing interactions between the antiferromagnetic ordering of the A(Mn) sublattice and the ferromagnetic ordering of the B(Cr) sublattice.  相似文献   

16.
Fe-Pt thin films were deposited by rf sputtering on an MgO substrate heated at different temperatures to induce the formation of the perpendicular Fe-Pt L10 phase with a different grain morphology on the nanometer scale. All films are characterized by a mazelike pattern of FePt nanograins with interconnected bases. MFM images and magnetization curves indicate that all samples have a strong perpendicular magnetic anisotropy arising from (0 0 1) growth. The temperature behaviour of the electrical resistance indicates that a percolating path exists for conduction electrons in the mazelike pattern. The magnetoresistance was measured as a function of magnetic field (applied longitudinally) and temperature in the ranges −70 kOe<H<+70 kOe and 4 K<T<150 K, respectively. All samples display a complex behaviour of the electrical resistance as a function of applied field. The role of the different magnetoresistance effects (both intrinsic and extrinsic) measured in these FePt thin films is elucidated.  相似文献   

17.
The importance of doping ZnO with magnetic ions is associated with the fact that this oxide is a good candidate for the formation of a magnetic-diluted semiconductor. Most of the studies reported in Co-doped ZnO were carried out in thin films, but the understanding of the modification of the magnetic behaviour due to doping demands the study of single-crystalline samples. In this work, ZnO single crystals were doped at room temperature with Co by ion implantation with fluences ranging between 2×1016 and 1×1017 ions cm−2 and implantation energy of 100 keV. As implanted samples show a superparamagnetic behaviour attributed to the formation of Co clusters, room temperature ferromagnetism is attained after annealing at 800 °C, but no magnetoresistance was detected in the temperature range from 10 to 300 K.  相似文献   

18.
Mn-doped GaN films (Ga1−xMnxN) were grown on sapphire (0 0 0 1) using Laser assisted Molecular Beam Epitaxy (LMBE). High-quality nanocrystalline Ga1−xMnxN films with different Mn concentration were then obtained by thermal annealing treatment for 30 min in the ammonia atmosphere. Mn ions were incorporated into the wurtzite structure of the host lattice by substituting the Ga sites with Mn3+ due to the thermal treatment. Mn3+, which is confirmed by XPS analysis, is believed to be the decisive factor in the origin of room-temperature ferromagnetism. The better room-temperature ferromagnetism is given with the higher Mn3+ concentration. The bound magnetic polarons (BMP) theory can be used to prove our room-temperature ferromagnetic properties. The film with the maximum concentration of Mn3+ presents strongest ferromagnetic signal at annealing temperature 950 °C. Higher annealing temperature (such as 1150 °C) is not proper because of the second phase MnxGay formation.  相似文献   

19.
Magnetotransport properties of magnetite thin films deposited on gallium arsenide and sapphire substrates at growth temperatures between 473 and 673 K are presented. The films were grown by UV pulsed laser ablation in reactive atmospheres of O2 and Ar, at working pressure of 8 × 10−2 Pa. Film stoichiometry was determined in the range from Fe2.95O4 to Fe2.97O4. Randomly oriented polycrystalline thin films were grown on GaAs(1 0 0) while for the Al2O3(0 0 0 1) substrates the films developed a (1 1 1) preferred orientation. Interfacial Fe3+ diffusion was found for both substrates affecting the magnetic behaviour. The temperature dependence of the resistance and magnetoresistance of the films were measured for fields up to 6 T. Negative magnetoresistance values of ∼5% at room temperature and ∼10% at 90 K were obtained for the as-deposited magnetite films either on GaAs(1 0 0) or Al2O3(0 0 0 1).  相似文献   

20.
A high-quality ferromagnetic GaMnN (Mn=2.8 at%) film was deposited onto a GaN buffer/Al2O3(0 0 0 1) at 885 °C using the metal-organic chemical vapor deposition (MOCVD) process. The GaMnN film shows a highly c-axis-oriented hexagonal wurtzite structure, implying that Mn doping into GaN does not influence the crystallinity of the film. No Mn-related secondary phases were found in the GaMnN film by means of a high-flux X-ray diffraction analysis. The composition profiles of Ga, Mn, and N maintain nearly constant levels in depth profiles of the GaMnN film. The binding energy peak of the Mn 2p3/2 orbital was observed at 642.3 eV corresponding to the Mn (III) oxidation state of MnN. The presence of metallic Mn clusters (binding energy: 640.9 eV) in the GaMnN film was excluded. A broad yellow emission around 2.2 eV as well as a relatively weak near-band-edge emission at 3.39 eV was observed in a Mn-doped GaN film, while the undoped GaN film only shows a near-band-edge emission at 3.37 eV. The Mn-doped GaN film showed n-type semiconducting characteristics; the electron carrier concentration was 1.2×1021/cm3 and the resistivity was 3.9×10−3 Ω cm. Ferromagnetic hysteresis loops were observed at 300 K with a magnetic field parallel and perpendicular to the ab plane. The zero-field-cooled and field-cooled curves at temperatures ranging from 10 to 350 K strongly indicate that the GaMnN film is ferromagnetic at least up to 350 K. A coercive field of 250 Oe and effective magnetic moment of 0.0003 μB/Mn were obtained. The n-type semiconducting behavior plays a role in inducing ferromagnetism in the GaMnN film, and the observed ferromagnetism is appropriately explained by a double exchange mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号