首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Surface interactions of alkylimidazolium ionic liquids (ILs) with aluminium alloy Al 2011 have been studied by immersion tests in seven neat ILs [1-n-alkyl-3-methylimidazolium X (X = BF4; n = 2 (IL1), 6 (IL2), 8 (IL3). X = CF3SO3; n = 2 (IL4). X = (4-CH3C6H4SO3); n = 2 (IL5). X = PF6; n = 6 (IL6)] and 1-butyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide (IL7)]. Immersion tests for Al 2011 have also been carried out in 1 wt.% and 5 wt.% solutions of 1-ethyl,3-methylimidazolium tetrafluoroborate (IL1) in water. No corrosion of Al 2011 by neat ILs is observed. The highest corrosion rate for Al 2011 in water is observed in the presence of a 5 wt.% IL1 due to hydrolysis of the anion with hydrogen evolution and formation of aluminium fluoride. Erosion-corrosion processes have been studied for three aluminium alloys (Al 2011, Al 6061 and Al 7075) in a 90 wt.% IL1 solution in water in the presence of α-alumina particles. The erosion-corrosion rates are around 0.2 mm/year or lower, and increase with increasing copper content to give a corrosion resistance order of Al 6061 > Al 7075 > Al 2011. Results are discussed on the basis of scanning electron microscopy (SEM) observations, energy dispersive spectroscopy (EDS) analysis, X-ray diffraction (XRD) patterns and X-ray photoelectron spectroscopy (XPS) determinations.  相似文献   

2.
Al/Al2O3 multilayers were deposited on sintered NdFeB magnets to improve the corrosion resistance. The amorphous Al2O3 films were used to periodically interrupt the columnar growth of the Al layers. The structure of the multilayers was investigated by Scanning Electron Microscopy (SEM) and High Resolution Transmission Electron Microscopy (HRTEM). It was found that the columnar structure was effectively inhibited in the multilayers. Subsequent corrosion testing by potentiodynamic polarization in 3.5 wt.% NaCl and neutral salt spray test (NSS) revealed that the Al/Al2O3 multilayers had much better corrosion resistance than the Al single layer. Furthermore, for multilayers with similar thickness, the corrosion resistance was improved as the period decreased.  相似文献   

3.
The corrosion behavior of Cu95−xZrxAl5 (x=40, 42.5 and 45 at.%) in 1 N HCl, 3 mass% NaCl and 1 N H2SO4 solutions was studied. As Zr content increases, the corrosion resistance is slightly enhanced. In order to improve the corrosion resistance of the Cu-Zr-Al glassy alloy, Nb was selected to substitute Cu. Although the supercooled liquid region ΔTx of the Cu-Zr-Al glassy alloys decreases with increasing Nb content, the alloys still retain high glass-forming ability and bulk glassy samples with 1.5 mm diameter can be obtained when up to 5 at.% Nb was added. It is found that the addition of Nb results in improvement of the corrosion resistance of the glassy Cu-Zr-Al alloys.  相似文献   

4.
Broad-beam laser cladding of Al-Cu alloy coating on AZ91HP magnesium alloy   总被引:3,自引:0,他引:3  
The resistance to wear and corrosion of AZ91HP Mg alloy was improved by laser cladding Al-Cu alloy. It was found that the clad layer was characterized by AlCu4 and Mg17Al12 grains embedded in a AlMg matrix. The bonding zone exhibited a white-light planar crystal band with thickness of 10-13 μm. The heat-affected zone formed a eutectic structure due to the Mg diffusion. The microhardness and wear resistance of the coating were improved due to the formation of the hard phases AlCu4 and Mg17Al12. Owing to the formation of dense Al2O3 oxide film, the coating exhibited better corrosion resistance in 3.5 wt.% NaCl solution.  相似文献   

5.
Cr1−xAlxC films were deposited on high-speed steel by RF reactive magnetron sputtering. In this study, we aimed to identify the effect of the Al content on the properties of Cr1−xAlxC films. We found that Cr1−xAlxC films exhibited a fine columnar grain microstructure with some special characteristics, such as high hardness of Hv 1426, a low friction coefficient of 0.29, and a large contact angle of 90° for x = 0.18. Furthermore, an increase in Al content resulted in a decrease in film hardness and an increase in contact angle. Moreover, on annealing at 923 K, the mechanical properties of the films improved and a dense protective film of complex Cr2O3 and Al2O3 oxides was formed on the surface for better wear resistance, which will ultimately increase the lifetime of the high-speed steel substrate.  相似文献   

6.
The effect of substituting Al for Si in Co36Fe36Si4−xAlxB20Nb4, (X=0, 0.5, 1.0, 1.5, 2.0 at%) alloys prepared in the form of melt-spun ribbons have been investigated. All the alloys were amorphous in their as-cast state. The onset of crystallization as observed using differential scanning calorimetry (DSC) was found to rise at low Al content up to X=1 at% beyond which there was a decreasing trend. The alloys also exhibited glass transition at ‘Tg’. Microstructural studies of optimally annealed samples indicated finer dispersions of nanoparticles in amorphous matrix which were identified as bcc-(FeCo)Si and bcc-(FeCo)SiAl nanophases by X-ray diffraction technique. Alloy with optimum content of Al around X=1 at% exhibited stability in coercivity at elevated temperatures. Though Al addition is known to lower magnetostriction, such consistency in coercivity may also be attributed towards lowering in the nanoparticle size compared to X=0 alloy. In the nanostructured state, the alloy containing optimum Al content (X=1) exhibited further enhancement in ferromagnetic ordering or the Curie temperature by 100 K compared to alloy without Al. Such addition also attributed to better frequency response of coercivity and low core losses.  相似文献   

7.
The effect of Ti and C additions on the corrosion behavior of Nd9.4Pr0.6Febal.Co6B6Ga0.5TixCx (x=0, 1.5, 3, 6) isotropic nanocomposite melt-spun ribbons in 3.5 wt% sodium chloride solution was studied. The melt-spun ribbons were annealed at 750 °C for 10 min in argon-filled quartz capsules. The microstructure of multiphase nanocrystalline samples and corrosion products was characterized using the X-ray diffraction and electron microscopy techniques. The electrochemical behavior was assessed using potentiodynamic polarization and electrochemical impedance spectroscopy. The results show that the addition of Ti and C increases the corrosion resistance of NdFeB ribbons; the best corrosion resistance was obtained for 1.5 wt% Ti and C content.  相似文献   

8.
The mechanisms of oxide whisker growth and hot corrosion of 430 stainless steel (430SS) and aluminide 430 stainless steel hot-dipped in a Al-10 wt.%Si molten bath (430HDAS) were studied at 750 and 850 °C in air mixed with 500 and 990 vppm NaCl(g). The results showed that the loose Cr2O3 scale which formed on the 430SS could not prevent the corrosion of 430SS in a 500 vppm NaCl(g) atmosphere, resulting in the formation of Fe2O3 scale. Fe2O3 whiskers grew at the grain boundary of the Fe2O3 scale. However, no Fe2O3 whiskers formed on the Fe2O3 scale while 430SS was exposed in a 900 vppm NaCl(g) atmosphere. During the initial high-temperature corrosion of 430HDAS in a 500 vppm NaCl(g) atmosphere, a dense Al2O3 scale formed on the surface of the specimens. Also, Al2O3 whiskers grew on the Al2O3 scale. As exposure time increased, cyclic chlorination/oxidation degraded the protective aluminide layer and caused the formation of Fe2O3 scale and Fe2O3 whiskers. The morphology of Fe2O3 whiskers formed at 750 °C is more slender than those formed at 850 °C. The formation and growth of both Fe2O3 and Al2O3 whiskers may be attributed to the chloridation of both the steel substrate and aluminide layer, accelerating the diffusion rate of metallic ions in the oxide scales.  相似文献   

9.
In this paper, a new composite coating was fabricated on magnesium alloy by a two-step approach, to improve the corrosion resistance and biocompatibility of Mg-Zn-Y-Nd alloy. First, fluoride conversion layer was synthesized on magnesium alloy surface by immersion treatment in hydrofluoric acid and then, Ti-O film was deposited on the preceding fluoride layer by magnetron sputtering. FE-SEM images revealed a smooth and uniform surface consisting of aggregated nano-particles with average size of 100 nm, and a total coating thickness of ∼1.5 μm, including an outer Ti-O film of ∼250 nm. The surface EDS and XRD data indicated that the composite coating was mainly composed of crystalline magnesium fluoride (MgF2), and non-crystalline Ti-O. Potentiodynamic polarization tests revealed that the composite coated sample have a corrosion potential (Ecorr) of −1.60 V and a corrosion current density (Icorr) of 0.17 μA/cm2, which improved by 100 mV and reduced by two orders of magnitude, compared with the sample only coated by Ti-O. EIS results showed a polarization resistance of 3.98 kΩ cm2 for the Ti-O coated sample and 0.42 kΩ cm2 for the composite coated sample, giving an improvement of about 100 times. After 72 h immersion in SBF, widespread damage and deep corrosion holes were observed on the Ti-O coated sample surface, while the integrity of composite coating remained well after 7 d. In brief, the data suggested that single Ti-O film on degradable magnesium alloys was apt to become failure prematurely in corrosion environment. Ti-O film deposited on fluoride-treated magnesium alloys might potentially meet the requirements for future clinical magnesium alloy stent application.  相似文献   

10.
Interaction of aluminium with cerium oxide was studied by photoelectron spectroscopy of Al/CeO2(1 1 1) and CeO2/Al(1 1 1) model systems. It was found in both cases that metallic aluminium was immediately oxidized, CeO2 was partially reduced and a mixed oxide with cerium present as Ce3+ was formed. The compound is probably cerium aluminate CeAlO3 mixed with Al2O3 or Ce2O3. In both cases the intermixing was limited by the diffusion of aluminium into ceria. The excess of deposited material above this limit formed AlOx and CeO2 overlayers on the top of the mixed oxide + aluminate/CeO2 and mixed oxide + aluminate/Al films, respectively.  相似文献   

11.
Zinc oxide doped with Al (AZO) thin films were prepared on borosilicate glass substrates by dip and dry technique using sodium zincate bath. Effects of doping on the structural and optical properties of ZnO film were investigated by XRD, EPMA, AFM, optical transmittance, PL and Raman spectroscopy. The band gap for ZnO:Al (5.0 at. wt.%) film was found to be 3.29 eV compared with 3.25 eV band gap for pure ZnO film. Doping with Al introduces aggregation of crystallites to form micro-size clusters affecting the smoothness of the film surface. Al3+ ion was found to promote chemisorption of oxygen into the film, which in turn affects the roughness of the sample. Six photoluminescence bands were observed at 390, 419, 449, 480, 525 and 574 nm in the emission spectra. Excitation spectra of ZnO film showed bands at 200, 217, 232 and 328 nm, whereas bands at 200, 235, 257 and 267 nm were observed for ZnO:Al film. On the basis of transitions from conduction band or deep donors (CB, Zni or VOZni) to valence band and/or deep acceptor states (VB, VZn or Oi or OZn), a tentative model has been proposed to explain the PL spectra. Doping with Al3+ ions reduced the polar character of the film. This has been confirmed from laser Raman studies.  相似文献   

12.
The effect of alloy surface roughness, achieved by different degrees of surface polishing, on the development of protective alumina layer on Fe-10 at.% Al alloys containing 0, 5, and 10 at.% Cr was investigated during oxidation at 1000 °C in 0.1 MPa oxygen. For alloys that are not strong Al2O3 formers (Fe-10Al and Fe-5Cr-10Al), the rougher surfaces increased Fe incorporation into the overall surface layer. On the Fe-10Al, more iron oxides were formed in a uniform layer of mixed aluminum- and iron-oxides since the layer was thicker. On the Fe-5Cr-10Al, more iron-rich nodules developed on an otherwise thin Al2O3 surface layer. These nodules nucleated preferentially along surface scratch marks but not on alloy grain boundaries. For the strong Al2O3-forming Fe-10Cr-10Al alloy, protective alumina surface layers were observed regardless of the surface roughness. These results indicate that the formation of a protective Al2O3 layer on Fe-Cr-Al surfaces is not dictated by Al diffusion to the surface. More cold-worked surfaces caused an enhanced Fe diffusion, hence produced more Fe-rich oxides during the early stage of oxidation.  相似文献   

13.
Ultrafine aluminum-substituted strontium hexaferrite particles have been prepared via citrate sol-gel route. Gels were synthesized with molar ratios [Al3+]:[Fe3+] of 0.4:11.6, 1:11, 1.5:10.5 and 2:10 and the ferrite particles were obtained by annealing the gels at 950 °C for 2 and 24 h. Electron energy dispersive X-ray spectroscopy (EDX) verified the presence of Al in the substituted samples. X-ray diffraction (XRD) confirmed the formation of the M-type hexaferrite phase in the samples with some indication of α-Fe2O3. Scanning electron microscope showed that the hexaferrite powder consists hexagonal crystals with average diameter Dav (80-186 nm) that decreases with increasing Al content and increases with increasing annealing time. Magnetic properties were determined using a pulsed-field magnetometer and a vibrating sample magnetometer (VSM). The saturation magnetization at room temperature and the Curie temperature were found to decrease while the coercivity increases with increasing the Al content. The highest coercivity of 10.1 kOe was achieved for the sample with the molar ratio [Al3+]:[Fe3+]=2:10 annealed for 24 h. The influences of the particle size, composition and impurity on the magnetic properties were discussed.  相似文献   

14.
Chemical nature of phytic acid conversion coating on AZ61 magnesium alloy   总被引:6,自引:0,他引:6  
Phytic acid (PA) conversion coating on AZ61 magnesium alloy was prepared by the method of deposition. The influences of pH, time and PA concentration on the formation process, microstructure and properties of the conversion coating were investigated. Scanning electron microscopy (SEM) was used to observe the microstructure. The chemical nature of conversion coating was investigated by energy dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) techniques. The corrosion resistance was examined by means of potentiodynamic polarization method. The adhesive ability was tested by score experiments. The results showed that the growth and microstructure of the conversion coatings were all obviously affected by pH, time and PA concentration. In 0.5 mg/ml PA solution with a pH of 5, an optimization conversion coating formed after 20 min immersion time by deposition of PA on AZ61 magnesium alloy surface through chelating with Al3+. It made the corrosion potential Ecorr of sample shifted positively about 171 mV than that of the untreated sample, and the adhesive ability reached to Grade 1 (in accordance with GB/T 9286).  相似文献   

15.
We report a systematic study of AgGaS2- and Al-doped GaSe crystals in comparison with pure GaSe and S-doped GaSe crystals. AgGaS2-doped GaSe (GaSe:AgGaS2) crystal was grown by Bridgman technique from the melt of GaSe:AgGaS2 (10.6 wt.%). Its real composition was identified as GaSe:S (2 wt.%). Al-doped GaSe (GaSe:Al) crystals were grown from the melt of GaSe and 0.01, 0.05, 0.1, 0.5, 1, 2 mass % of aluminium. Al content in the grown crystals is too small to be measured. The hardness of GaSe:S (2 wt.%) crystal grown from the melt of GaSe:AgGaS2 is 25% higher than that of GaSe:S (2 wt.%) crystal grown by a conventional S-doping technique and 1.5- to 1.9-times higher than that of pure GaSe. GaSe:Al crystals are characterized by 2.5- to 3-times higher hardness than that of pure GaSe and by extremely low conductivity of ≤ 10− 7 Om− 1 cm− 1. A comparative experiment on SHG in AgGaS2-, Al-, S-doped GaSe and pure GaSe is carried out under the pumps of 2.12-2.9 μm fs OPA and 9.2−10.8 μm ns CO2 laser. It was found that GaSe:S crystals possess the best physical properties for mid-IR applications among these doped GaSe crystals. GaSe:Al crystals have relatively low conductivity which have strong potential for THz application.  相似文献   

16.
A new cold spray coating technique for thick Al coating with finely dispersed Al-Ni intermetallic compounds was tested. For easy powder preparation and high yield, rather than using of Al/compound mixture feed stock, the spraying of pure Al and Ni powders mixture followed by post-annealing was suggested. The powder composition of Al and Ni was 75:25, and 90:10 (wt.%) to expect full consumption of pure Ni into intermetallic compounds. After Al-Ni composite coatings, the Ni particles were finely dispersed and embedded in the Al matrix with a good coating yield. Above 450 °C of post-annealing temperature, the Al3Ni and Al3Ni2 phases were observed in the cold-sprayed Al-Ni coatings. The Ni particles in the Al matrix were fully consumed via compounding reaction with Al at 550 °C of the annealing temperature.  相似文献   

17.
The aim of this work is to study the effects of duty ratio on the growth mechanism of the ceramic coatings on Ti-6Al-4V alloy prepared by pulsed single-polar MPO at 50 Hz in NaAlO2 solution. The phase composition of the coatings was studied by X-ray diffraction, and the morphology and the element distribution in the coating were examined through scanning electron microscopy and energy dispersive spectroscopy. The thickness of the coatings was measured by eddy current coating thickness gauge. The corrosion resistance of the coated samples was examined by linear sweep voltammetry technique in 3.5% NaCl solution. The changes of the duty ratio (D) of the anode process led to the changes of the mode of the spark discharge during the pulsed single-polar MPO process, which further influenced the structure and the morphology of the ceramic coatings. The coatings prepared at D = 10% were composed of a large amount of Al2TiO5 and a little γ-Al2O3 while the coatings prepared at D = 45% were mainly composed of α-Al2O3 and γ-Al2O3. The coating thickness and the roughness were both increased with the increasing D due to the formation of Al2O3. The formation of Al2TiO5 resulted from the spark discharge due to the breakdown of the oxide film, while the formation of Al2O3 resulted from the spark discharge due to the breakdown of the vapor envelope. The ceramic coatings improved the corrosion resistance of Ti-6Al-4V alloy. And the surface morphology and the coating thickness determined the corrosion resistance of the coated samples prepared at D = 45% was better than that of the coated samples prepared at D = 10%.  相似文献   

18.
Chromium aluminum nitride (Cr1−xAlxN) coatings were deposited onto AISI H13 steel and silicon substrates by r.f. reactive magnetron co-sputtering in (Ar/N2) gas mixture from chromium and aluminum targets. Properties of deposited Cr1−xAlxN coatings such as compositional, structural, morphological, electrochemical, mechanical and tribological, were investigated as functions of aluminum content. X-ray diffraction patterns of Cr1−xAlxN coatings with different atomic concentrations of aluminum (0.51 < x < 0.69) showed the presence and evolution of (1 1 1), (2 0 0), and (1 0 2) crystallographic orientations associated to the Cr1−xAlxN cubic and w-AlN phases, respectively. The rate of corrosion of the steel coated with Cr1−xAlxN varied with the applied power; however, always being clearly lower when compared to the uncoated substrate. The behavior of the protective effect of the Cr1−xAlxN coatings is based on the substitution of Cr for Al, when the power applied to the aluminum target increases. The mechanical properties were also sensitive to the power applied, leading to a maximum in hardness and a reduced elastic modulus of 30 and 303 GPa at 350 W and a monotonic decrease to 11 and 212 GPa at 450 W, respectively. Finally, the friction coefficient measured by pin-on disk revealed values between 0.45 and 0.70 in humid atmosphere.  相似文献   

19.
Al1−xFexN1−δ thin films with 0 ≤ x ≤ 13.6% were deposited by dc magnetron co-sputtering at room temperature (RT). It is found that Fe atom will substitutes the Al atom in the lattice when x ≤ 1.2%, while it will embed into the interstice of the lattice at larger Fe content. RT ferromagnetism was observed in all doped samples. A maximum saturated magnetization 2.81 emu/cm3 of the film is found to be induced by AlFeN ternary alloy when x = 1.2%.  相似文献   

20.
To increase the SiC content in Cr-based coatings, Cr-Al2O3/SiC composite coatings were plated in Cr(VI) baths which contained Al2O3-coated SiC powders. The Al2O3-coated SiC composite particles were synthesized by calcining the precursor prepared by heterogeneous deposition method. The transmission electron microscopy analysis of the particles showed that the nano-SiC particle was packaged by alumina. The zeta potential of the particles collected from the bath was up to +23 mV, a favorable condition for the co-deposition of the particles and chromium. Pulse current was used during the electrodeposition. Scanning Electron Microscopy (SEM) indicated that the coating was compact and combined well with the substrate. Energy dispersive X-ray analysis of Cr-Al2O3/SiC coatings demonstrated that the concentration of SiC in the coating reached about 2.5 wt.%. The corrosion behavior of the composite coating was studied by potentiodynamic polarization and electrochemical impedance spectroscopy techniques. The data obtained suggested that the Al2O3/SiC particles significantly enhanced the corrosion resistance of the composite coating in 0.05 M HCl solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号