首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of addition of 1,3-bis(3-hyroxymethyl-5-methyl-1-pyrazole) propane (M = 264 g). HMPP on steel corrosion in 0.5 M sulphuric acid is studied by weight-loss, electrochemical polarisation and electrochemical impedance spectroscopy (EIS) measurements at various temperatures. The results obtained showed that HMPP acts as a good corrosion inhibitor. The inhibition efficiency increases with the bipyrazole compound to attain 88%. It acts as a mixed-type inhibitor. Trends in the increase of charge-transfer resistance and decrease of capacitance values also show the adsorption of the molecule on the metal surface. The bipyrazole adsorbs on the steel surface according to the Langmuir isotherm adsorption model. Effect of temperature indicates that inhibition efficiency decreases with temperature between 25 and 85 °C.  相似文献   

2.
Artemisia oil (Ar) is extracted from artemisia herba alba collected in Ain es-sefra-Algeria, and tested as corrosion inhibitor of steel in 2 M H3PO4 using weight loss measurements, electrochemical polarisation and EIS methods. The naturally oil reduces the corrosion rate. The inhibition efficiency was found to increase with oil content to attain 79% at 6 g/l. Ar acts as a cathodic inhibitor. The effect of temperature on the corrosion behaviour of steel indicates that inhibition efficiency of the natural substance decreases with the rise of temperature. The adsorption isotherm of natural product on the steel has been determined.  相似文献   

3.
The electrochemical impedance spectroscopy (EIS) was used to study the characteristics of CO2 corrosion of N80 and 4Cr steels with corrosion scales. The results indicated that CO2 corrosion scale on tube steel could prevent the rate of mass transfer remarkably, corrosion rate was controlled by ions diffusion in corrosion scale, which led to finite length diffusion impedance occurred in electrochemical impedance spectra. Additionally, pitting of N80 steel could lead to additional capacitive reactance in impedance spectrum. The ion diffusion coefficient in corrosion scale and porosity of corrosion scale could be calculated by Warburg impedance coefficient, the results shown that the value of H+ diffusion coefficient in N80 and 4Cr corrosion scale is (3.46 and 1.76) × 10−10 m2 s−1, respectively. The protective ability of 4Cr corrosion scale was better than that of N80 corrosion scale.  相似文献   

4.
Berberine was abstracted from coptis chinensis and its inhibition efficiency on corrosion of mild steel in 1 M H2SO4 was investigated through weight loss experiment, electrochemical techniques and scanning electronic microscope (SEM) with energy disperse spectrometer (EDS). The weight loss results showed that berberine is an excellent corrosion inhibitor for mild steel immersed in 1 M H2SO4. Potentiodynamic curves suggested that berberine suppressed both cathodic and anodic processes for its concentrations higher than 1.0 × 10−4 M and mainly cathodic reaction was suppressed for lower concentrations. The Nyquist diagrams of impedance for mild steel in 1 M H2SO4 containing berberine with different concentrations showed one capacitive loop, and the polarization resistance increased with the inhibitor concentration rising. A good fit to Flory-Huggins isotherm was obtained between surface coverage degree and inhibitor concentration. The surface morphology and EDS analysis for mild steel specimens in sulfuric acid in the absence and presence of the inhibitor also proved the results obtained by the weight loss and electrochemical experiments. The correlation of inhibition effect and molecular structure of berberine was then discussed by quantum chemistry study.  相似文献   

5.
The inhibition of the corrosion of carbon steel in 1 M HClO4 by 2-mercapto-1-methylimidazole (MMI) has been investigated in relation to the concentration of the inhibitor as well as the temperature using weight loss and electrochemical measurements. The effect of the temperature on the corrosion behaviour with addition of different concentrations of MMI was studied in the temperature range 30-60 °C. Polarization curves reveal that MMI is a mixed type inhibitor. The inhibition efficiency of MMI is temperature independent but increases with the inhibitor concentration. Changes in impedance parameters (charge transfer resistance, Rt, and double-layer capacitance, Cdl) were indicative of adsorption of MMI on the metal surface, leading to the formation of a protective film. Adsorption of MMI on the carbon steel surface is found to obey the Langmuir adsorption isotherm. Some thermodynamic functions of dissolution and adsorption processes were also determined. The X-ray photoelectron spectroscopy (XPS) of the carbon steel indicated that MMI is chemically adsorbed on the steel surface. Moreover, the electronic properties such as highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) energy levels and molecular orbital densities were calculated.  相似文献   

6.
The component and structure of CO2 corrosion scale formed on N80 tubing steel were studied by using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscopy (SEM); the electrochemical property of N80 steel covered by corrosion scale was investigated by electrochemical impedance spectroscopy (EIS). The results shows a double-layer structure of the corrosion scale, in which the principal component of the outer layer is FeCO3 with a limited amount of ∂-FeOOH; while for the inner scale, FeCO3 is still the major component, but some Fe positions in FeCO3 lattice are substituted by Ca, and form a composite compound of (Fe,Ca)CO3 in the inner scale. EIS study shows that the anodic impedance spectrum has three time constants, i.e., the capacitance at high frequency, Warburg impedance at middle frequency and capacitance at low frequency.  相似文献   

7.
The effect of Ti and C additions on the corrosion behavior of Nd9.4Pr0.6Febal.Co6B6Ga0.5TixCx (x=0, 1.5, 3, 6) isotropic nanocomposite melt-spun ribbons in 3.5 wt% sodium chloride solution was studied. The melt-spun ribbons were annealed at 750 °C for 10 min in argon-filled quartz capsules. The microstructure of multiphase nanocrystalline samples and corrosion products was characterized using the X-ray diffraction and electron microscopy techniques. The electrochemical behavior was assessed using potentiodynamic polarization and electrochemical impedance spectroscopy. The results show that the addition of Ti and C increases the corrosion resistance of NdFeB ribbons; the best corrosion resistance was obtained for 1.5 wt% Ti and C content.  相似文献   

8.
The work addresses the influence of cementation and electrodeposition of copper coatings on the corrosion resistance of AISI 304 stainless steel immersed in 30 wt.% H2SO4 at temperatures of 25 and 50 °C. Corrosion process was evaluated by gravimetric tests, DC measurements and electrochemical impedance spectroscopy (EIS). The specimen surfaces were analysed by scanning electron microscopy, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction. The corrosion performance of AISI 304 stainless steel in sulphuric acid solution was greatly improved by copper coatings. The amount of copper deposited by the cementation process was sufficient to protect the stainless steel of corrosion. A greater amount of copper obtained by electrodeposition treatments does not supply further improvement in the corrosion behaviour. The improved corrosion resistance is related to copper dissolution at the initial stages of immersion tests and the presence of Cu2+ in the solution, which makes the medium more oxidizing, increasing the stability of the passive layer. In addition, the presence of copper at the surface reduces the overpotential of cathodic reaction, enabling the transition from an active region to the passive one.  相似文献   

9.
Ni-Zn-P-TiO2 composite coatings were successfully obtained on low carbon steel by electroless plating technique. Deposits were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive analysis (EDS) studies. The hardness and microstructure of as plated and heat treated Ni-Zn-P and Ni-Zn-P-TiO2 composite coatings were analyzed. The change in microstructure and higher hardness was noticed for heat treated composite. The corrosion resistance behavior of as plated and heat treated Ni-Zn-P and Ni-Zn-P-TiO2 coatings was investigated by anodic polarization, Tafel plots and electrochemical impedance spectroscopic (EIS) studies in 3.5 wt% NaCl solution. The composite coating exhibited enhanced corrosion resistance property over Ni-Zn-P coating.  相似文献   

10.
A single phase Cu-Zn-Bi film is fabricated on the steel wire by electrodeposition. Bi addition (∼1 wt.%) greatly increases the corrosion resistance of brass (Cu−36 wt.% Zn) film in a 0.05 M K2SO4 solution as shown by potentiodynamic polarization and electrochemical impendence spectroscopy (EIS) experiments. It is proposed that the main reason for the improvement in the corrosion resistance by the Bi addition is that it greatly increased the crack resistance, which thus prevents crack-induced galvanic corrosion occurring between the brass film and the steel substrate.  相似文献   

11.
Novel corrosion inhibitors, namely 1-{2-[(2-hydroxyethyl)thio]ethyl}pyrrolidin-2-one (P5) and {[2-(2-oxopyrrolidin-1-yl)ethyl]thio}acetic acid (P4), were synthesised and tested as corrosion inhibitors for steel in 0.5 M H2SO4. The effects of P4 and P5 are also compared to their initial reactants 1-vinylpyrrolidin-2-one (P1), 2-mercaptoethanol (P2) and mercaptoacetic acid (P3). The study was carried out by weight loss measurements, potentiodynamic polarisation, linear polarisation resistance (Rp) and electrochemical impedance spectroscopy (EIS) methods. The inhibition efficiency increases with the concentration of P5 to attain 89% at 5 × 10−3 M. We note good agreement between the various methods explored. Polarisation measurements show also that the pyrrolidones act essentially as cathodic inhibitors. The cathodic curves indicate that the reduction of proton at the steel surface is an activating mechanism. P4 and P5 adsorb on the steel surface according to Langmuir adsorption model. Effect of temperature is also studied in the 298-353 K range. Efficiency is explained by the theoretical studies.  相似文献   

12.
This paper describes the use of the electrochemical impedance spectroscopy technique (EIS) in order to study the corrosion inhibition process of steel in 0.5 M H2SO4 solution at the open circuit potential (OCP). Diethyl pyrazine-2,3-dicarboxylate (Prz) as a non-ionic surfactant (NS) inhibitor has been examined. The Nyquist diagrams consisted of a capacitive semicircle at high frequencies followed by a well-defined inductive loop at low frequency values. The impedance measurements were interpreted according to suitable equivalent circuits. The results obtained showed that the Prz is a good inhibitor. The inhibition efficiency increases with an increase in the surfactant concentration to attain 80% at the 5 × 10−3M. Prz is adsorbed on the steel surface according to a Langmuir isotherm adsorption model.  相似文献   

13.
Polyaniline (PANi), poly(2-iodoaniline) (PIANi), and poly(aniline-co-2-iodoaniline) (co-PIANi) were synthesized using cyclic voltammetry in acetonitrile solution containing tetrabuthylammonium perchlorate (TBAP) and perchloric acid (HClO4) on 304-stainless steel electrodes. Adherent and black polymer films were obtained on the electrodes. The structure and properties of these polymer films were characterized by FTIR and UV-vis spectroscopy and electrochemical method. The corrosion performance of PANi, PIANi, and co-PIANi coated electrodes were investigated in 0.5 M hydrochloric acid (HCl) solutions by potentiodynamic polarization technique, open circuit potential-time curves and electrochemical impedance spectroscopy, EIS. It was found that the PANi film could provide much better protection than PIANi, and co-PIANi and PANi films have barrier property as well as acting as passivator. On the other hand PIANi and co-PIANi films are acting as barrier coatings which were related with the prevention of cathodic reaction taking place at metal\electrolyte interface. EIS measurement shows that every coating gives protection efficiency of greater than 75% after 48 h of immersion time in corrosive test solution.  相似文献   

14.
The effect of the addition of some tetrazolic type organic compounds: 1-phenyl-5-mercapto-1,2,3,4-tetrazole (PMT), 1,2,3,4-tetrazole (TTZ), 5-amino-1,2,3,4-tetrazole (AT) and 1-phenyl-1,2,3,4-tetrazole (PT) on the corrosion of brass in nitric acid is studied by weight loss, polarisation and electrochemical impedance spectroscopy (EIS) measurements. The explored methods gave almost similar results. Results obtained reveal that PMT is the best inhibitor and the inhibition efficiency (E%) follows the sequence: PMT > PT > AT > TTZ. Polarization measurements also indicated that tetrazoles acted as mixed-type inhibitors without changing the mechanism of the hydrogen evolution reaction. Partial π-charge on atoms has been calculated. Correlation between the highest occupied molecular orbital energy EHOMO and inhibition efficiencies was sought. The adsorption of PMT on the brass surface followed the Langmuir isotherm. Effect of temperature is also studied in the (25-50 °C) range.  相似文献   

15.
We have chemically polymerized pyrrole in the presence of Sn-doped TiO2 nanoparticles (NPs) and TiO2 (NPs) which act as a protective pigment. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) results show a core-shell structure of pigments in which TiO2 and Sn-doped TiO2 NPs have a nucleus effect and caused a homogenous PPy core-shell type morphology leading to coverage of the TiO2 and Sn-doped TiO2 NPs by PPy deposit. The XRD results indicate that the crystalline size of polypyrrole/TiO2 NCs and polypyrrole/Sn-doped TiO2 NCs were approximately 93.46 ± 0.06 and 23.36 ± 0.06 nm respectively. The electrochemical impedance spectroscopy (EIS) results show that the performance of polypyrrole/Sn-doped TiO2 NCs is better than polypyrrole/TiO2 NCs. The results indicate that increasing the area of synthesized polypyrrole in the presence of Sn-doped TiO2 NPs can increase its ability to interact with the ions liberated during the corrosion reaction of steel in the presence of NaCl. The UV-vis results show that the band gap of TiO2 NPs increases with doped of Sn in lattice of TiO2. The increase of the band gap of TiO2 with doping of Sn can decrease the charge transfer through the coating.  相似文献   

16.
The corrosion inhibition of mild steel in 0.5 M hydrochloric acid solutions by some new hydrazine carbodithioic acid derivatives namely N′-furan-2-yl-methylene-hydrazine carbodithioic acid (A), N′-(4-dimethylamino-benzylidene)-hydrazine carbodithioic acid (B) and N′-(3-nitro-benzylidene)-hydrazine carbodithioic (C) was studied using chemical (weight loss) and electrochemical (potentiodynamic and electrochemical impedance spectroscopy, EIS) measurements. These measurements show that the inhibition efficiency obtained by these compounds increased by increasing their concentration. The inhibition efficiency follow the order C > B > A. Polarization studies show that these compounds act as mixed type inhibitors in 0.5 M HCl solutions. These inhibitors function through adsorption following Langmuir isotherm. The electronic properties of these inhibitors, obtained using PM3 semi-empirical self-consistence field method, have been correlated with their experimental efficiencies using non-linear regression method.  相似文献   

17.
The copolymers from different feed ratios of N-(methacryloyloxymethyl) benzotriazole (MMBT) and methyl methacrylate (MMA) has been synthesised using free radical solution polymerization technique and characterized using FT-IR and 13C NMR spectroscopy. The thermal stability of the polymers was studied using theremogravimetrtic analysis (TGA). The corrosion behaviors of mild steel specimens dip coated with different composition of copolymers have been evaluated by potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) method. These electrochemical properties were observed in 0.1 M HCl medium. The polarization and impedance measurements showed different corrosion protection efficiency with change in composition of the copolymers. It was found that the corrosion protection properties are owing to the barrier effect of the polymer layer covered on the mild steel surfaces. However, it was observed that the copolymer obtained from 1:1 mole ratio of MMBT and MMA exhibited better protection efficiency than other combinations.  相似文献   

18.
Ta-N thin films were deposited on AISI 317L stainless steel (SS) substrates by cathodic arc deposition (CAD) at substrate biases of −50 and −200 V. The as-deposited films were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray analysis (EDX). The results show that stoichiometric TaN with hexagonal lattice (3 0 0) preferred orientation was achieved at the bias of −200 V. On the other hand, Ta-rich Ta-N thin film deposited at −50 V shows amorphous nature. According to the XPS result, Ta element in the films surface exist in bonded state, including the Ta-N bonds characterized by the doublet (Ta 4f7/2 = 23.7 eV and Ta 4f5/2 = 25.7 eV). Electrochemical properties of the Ta-N coated stainless steel systems were investigated using potentiodynamic polarization and electrochemical impedance spectroscope (EIS) in Hank's solution at 37 °C. For the Ta-N coated samples, the corrosion current (icorr) is two or three orders of magnitude lower than that of the uncoated ones, indicating a significantly improved corrosion resistance. Growth defects in the Ta-N thin films produced by CAD, however, play a key role in the corrosion process, especially the localised corrosion. Using the polarization fitting and the EIS modelling, we compared the polarization resistance (Rp) and the porosity (P) of the Ta-N coatings deposited at different biases. It seems that Ta-N film with comparatively lower bias (−50 V) shows better corrosion behavior in artifical physiological solution. That may be attributed to the effect of ion bombarding, which can be modulated by the substrate bias.  相似文献   

19.
Atmospheric pressure chemical vapor deposition (APCVD) of TiO2 thin films has been achieved onto glass and onto ITO-coated glass substrates, from the reaction of TiCl4 with ethyl acetate (EtOAc). The effect of the synthesis temperature on the optical, structural and electrochemical properties was studied through spectral transmittance, X-ray diffraction (XRD) and electrochemical impedance spectroscopy (EIS) measurements. It was established that the TiO2 films deposited onto glass substrate, at temperatures greater than 400 °C grown with rutile type tetragonal structure, whereas the TiO2 films deposited onto ITO-coated glass substrate grown with anatase type structure. EIS was applied as suitable method to determine the charge transfer resistance in the electrolyte/TiO2 interface, typically found in dye-sensitized solar cells.  相似文献   

20.
The corrosion behavior of boride layers at the AISI 304 steel surface is evaluated in the present study. Electrochemical impedance spectroscopy (EIS) technique was used for the evaluation of the polarization resistance at the steel surface, with the aid of AUTOLAB potentiostat. Samples were treated with boron paste thickness of 4 and 5 mm, in the range of temperatures 1123 ≤ T ≤ 1273 K and exposed time of 4 and 6 h. The electrochemical technique employed 10 mV AC with a frequency scan range from 8 kHz to 3 mHz in deaerated 0.1 M NaCl solution. Nyquist diagrams show that the highest values of corrosion resistance are present in the samples borided at the temperature of 1273 K, with treatment time of 4 h and 4 mm of boron paste thickness. The values of corrosion resistance on borided steels are compared with the porosity exhibited in the layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号