首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
C. Biswas 《Surface science》2006,600(18):3749-3752
The surface of Ni2+xMn1−xGa have been studied using X-ray photoelectron spectroscopy under different conditions of surface preparation. We find that the surface becomes Ni rich by argon ion sputtering. However, the change in surface composition due to sputtering can be reverted by annealing at appropriate temperature so that the bulk composition is restored at the surface. The origin of a satellite feature observed both in the valence band and the Ni 2p core-level spectra is discussed. The magnetic microstructures at the surface have been observed by using magnetic force microscopy.  相似文献   

2.
X-ray photoelectron spectroscopy (XPS) has been used to investigate the evolution of surface chemistry of YBa2Cu3O7−δ (Y123) films prepared by the metalorganic deposition (MOD) process using trifluoroacetate (TFA) precursors. Detailed XPS core-level spectra obtained from the samples quenched from various points during the calcining and firing stages have been reported for the first time and are used to identify surface species. The XPS data show evidence of formation of intermediate phases such as Y-O-F, BaF2, and CuO during the calcining process, which are the decomposition products of yttrium, barium, and copper trifluoroacetates, respectively. The TFA precursors are completely decomposed at the end of calcination. The change of binding energies for Y 3d5/2, Ba 3d5/2, and O 1s during the firing process indicates that Y123 starts to form at 800 °C after 0.5 h firing. Based on the experimental results, an alternative mechanism of the chemical evolution from precursor to final film in the TFA-MOD process is proposed.  相似文献   

3.
A surface characterization study using X-ray photoelectron spectroscopy (XPS) and ion scattering spectroscopy (ISS) has been performed on a 5 wt.% Pd/Co3O4 methane oxidation catalyst before and after exposure to a mixture of CH4 and O2 in N2 at 250 °C for a period of 6 days. The primary peaks observed in the XPS survey spectra are the Co 2p, Pd 3d, O 1s and C 1s, along with Co, Pd and O Auger peaks. High-resolution Pd 3d spectra reveal that Pd exists on the surface predominantly as PdO, with no apparent change in chemical state during reaction. High-resolution XPS Co 2p and O 1s spectra reveal an accumulation of CoOOH and a depletion of CoO in the near-surface region during reaction. ISS analysis with intermittent 1-keV Ar+ sputtering was used to obtain depth profiles from the catalyst before and after reaction. The results indicate that the Pd/Co concentration ratio decreases with sputtering and that this ratio is larger for the as-prepared catalyst indicating that morphological changes occur during reaction. The ISS depth profile spectra obtained from the catalyst after reaction indicates the presence of an oxyhydroxide layer throughout the near-surface region. This observation is consistent with the XPS data indicating accumulation of hydroxide and oxyhydroxide species at the surface during reaction.Based on these data and the results of related studies, a reaction mechanism is proposed. In this mechanism, methane dissociatively chemisorbs to form a surface methoxy species and CoOOH. The remaining hydrogen atoms are stripped from the methoxy species leaving an active adsorbed C species which reacts with surface oxygen and a hydroxyl group to form an adsorbed bicarbonate ion which then decomposes to form CO2 and a surface hydroxyl group. These hydroxyl groups also react to form H2O and then more O2 adsorbs dissociatively at the vacant sites.  相似文献   

4.
Nickel nanoparticles were grown in silica glass by annealing of the sol-gel prepared silicate matrices doped with nickel nitrate. TEM characterization of Ni/SiO2 glass proves the formation of isolated spherical nickel nanoparticles with mean sizes 6.7 and 20 nm depending on annealing conditions. The absorption and photoluminescence spectra of Ni/SiO2 glasses were measured. In the absorption spectra, we observed the band related to the surface plasmon resonance (SPR) in Ni nanoparticles. The broadening of SPR was observed with decrease of Ni nanoparticle size. The width of the surface plasmon band decreases 1.5 times at the lowering of temperature from 293 to 2 K because of strong electron-phonon interaction. The spectra proved the creation of nickel oxide NiO clusters and Ni2+ ions in silica glass as well.  相似文献   

5.
The (1 0 0) surface of Ni2MnGa and Mn2NiGa ferromagnetic shape memory alloys have been studied by photoelectron spectroscopy and low energy electron diffraction (LEED). It is shown that by sputtering and annealing, it is possible to obtain a clean, ordered and stoichiometric surface that shows a four-fold 1 × 1 LEED pattern at room temperature. For both Ni2MnGa and Mn2NiGa, the surface becomes Ni-rich and Mn deficient after sputtering. However, as the annealing temperature is increased Mn segregates to the surface and at sufficiently high annealing temperature the Mn deficiency caused by sputtering is compensated. The (1 0 0) surface of Ni2MnGa is found to have Mn-Ga termination. The valence band spectra of both Ni2MnGa and Mn2NiGa exhibits modifications with surface composition. For the stoichiometric surface, the origin of the spectral shape of the valence band is explained by calculations based on first principles density functional theory.  相似文献   

6.
CdIn2O4 thin films were prepared by direct-current (DC) reactive magnetron sputtering. The structure, surface morphology and the chemical composition of the thin films were analyzed by X-ray diffraction (XRD), atomic force microscope (AFM) and X-ray photoelectron spectroscopy (XPS), respectively. The electrical properties of the films prepared in different oxygen concentration and annealing treatment were determined, and the effects of the preparing conditions on the structure and electrical properties were also explored. It indicates that the CdIn2O4 thin films with uniform and dense surface morphology contain mainly CdIn2O4, In2O3 phases, and CdO phase is also observed. The XPS analysis confirms the films are in oxygen-deficient state. The electrical properties of these films significantly depend on the preparing conditions, the resistivity of the films with the oxygen concentration of 4.29% is 2.95 × 10−4 Ω cm and the Hall mobility is as high as 60.32 cm2/V s. Annealing treatment can improve the electrical performance of the films.  相似文献   

7.
Na0.88Mn0.56PS3compounds have been synthesized by starting from MnPS3 polycrystalline powders by means of a two-step cation-exchange process at a higher intercalation time than the one used for producing the literature reported Na0.62Mn0.69PS3 compounds. The obtained samples have been characterized by X-ray photoelectron spectroscopy (XPS). The resulting spectra of the so-synthesized compounds have been compared with those observed in Na0.62Mn0.69PS3 in our previous paper and similar electronic properties have been noted. In particular by XPS it has been shown that greater sodium content affects neither the core-level binding energies of the host matrix elements nor the type of link between Na+ and (Mn1−xPS3).  相似文献   

8.
Tungsten-titanium (W-Ti) thin film was deposited by dc Ar+ sputtering of W(70 at.%)-Ti(30 at.%) target. The thin film composition, determined by X-ray photoelectron spectroscopy (XPS) depth profiling, is W(0.77±0.07)Ti(0.08±0.03)O(0.15±0.03). The presence of oxygen in the deposit is due to the rather poor vacuum conditions during the deposition, while significant deficiency of Ti, as compared to the sputtering target composition cannot be explained straightforwardly. Monte Carlo simulations of both, transport of sputtered particles from target to the substrate through the background gas (SRIM 2003 program) and thin film sputtering during the XPS depth profiling (program TRIDYN_FZR) are presented. The simulations show that the particle transport through the background gas is mainly responsible for the Ti depletion: the estimated composition of the thin film is W0.61Ti0.16O0.23. Additional apparent Ti depletion occurs due to the preferential sputtering during the thin film composition analysis. The simulation of the sputtering process show that the surface concentration measured by XPS should be about W0.74Ti0.11O0.15. The discrepancy between the estimated surface composition and the actual experimental result is in the range of the experimental error.  相似文献   

9.
The paper presents measurements of magnetic permeability, magnetic after-effects, magnetostriction, DSC and XPS for the Fe80Nb6B14 amorphous alloys preliminary annealed for 1 h at temperatures ranging from 300 to 770 K. It was shown that annealing out of free volume and internal stresses causes a decrease of magnetostriction coefficient and leads to the formation of the energetically stable relaxed amorphous state. The XPS spectra show local fluctuation of boron density. This effect was attributed to the formation of small iron clusters—the characteristic feature for the relaxed amorphous phase.  相似文献   

10.
Cluster-size-dependent binding energy (BE) shifts of Ni 2p3/2 spectra in Ni clusters with respect to bulk Ni metal have been studied as a function of Ni coverage on clean rutile TiO2(0 0 1) surfaces at room temperature. Auger parameter (AP) analysis of photoelectron spectra has been employed and revealed an obvious initial state contribution at the coverage of 0.5 monolayers (ML). The initial state effect was demonstrated to be strongly affected by the substrate and was assigned to a combination of eigenvalue shift in surface core-level shift (SCLS) and charge transfer between the metal clusters and substrates. The TiO2(0 0 1) surface stoichiometry was found to introduce different charge transfer behaviors. Our results experimentally present that the Ni clusters are charged positively on stoichiomtric TiO2 surface and less positively or even negatively on various reduced surfaces.  相似文献   

11.
In the present work, X-ray photoelectron spectroscopy (XPS) was used to investigate the composition depth profiles of Bi3.15Nd0.85Ti3O12 (BNT) ferroelectric thin film, which was prepared on Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrates by chemical solution deposition (CSD). It is shown that there are three distinct regions formed in BNT film, which are surface layer, bulk film and interface layer. The surface of film is found to consist of one outermost Bi-rich region. High resolution spectra of the O 1s peak in the surface can be decomposed into two components of metallic oxide oxygen and surface adsorbed oxygen. The distribution of component elements is nearly uniform within the bulk film. In the bulk film, high resolution XPS spectra of O 1s, Bi 4f, Nd 3d, Ti 2p are in agreement with the element chemical states of the BNT system. The interfacial layer is formed through the interdiffusion between the BNT film and Pt electrode. In addition, the Ar+-ion sputtering changes lots of Bi3+ ions into Bi0 due to weak Bi-O bond and high etching energy.  相似文献   

12.
Mo surface-modified layer in Ti6Al4V alloy was prepared using plasma surface alloying technique. Microstructure of the modified layer was analyzed using X-ray photoelectron spectroscopy (XPS), rough-meter and GDA750 glow discharge optical emission spectrometer. Phase composition of the Mo surface-modified layer was characterized by D/max 2500 X-ray diffraction. Results show that the Mo surface-modified layers consist of pure Mo surface layer with 〈1 1 0〉 and 〈2 1 1〉 orientations and diffusion layer. Mo 3d, O 1s, C 1s and Ti 2p, O 1s, C 1s XPS spectra are recorded at topsurface in the Mo-modified layer and titanium substrate respectively. Because of the different roughness and microstructure, the Mo surface-modified layer can to some extent inhibit bacteria adherence.  相似文献   

13.
Preparation of Cu2ZnSnS4 thin films by hybrid sputtering   总被引:2,自引:0,他引:2  
In order to fabricate Cu2ZnSnS4 thin films, hybrid sputtering system with two sputter sources and two effusion cells is used. The Cu2ZnSnS4 films are fabricated by the sequential deposition of metal elements and annealing in S flux, varying the substrate temperature. The Cu2ZnSnS4 films with stoichiometric composition are obtained at the substrate temperature up to 400 °C, whereas the film composition becomes quite Zn-pool at the substrate temperature above 450 °C. The Cu2ZnSnS4 film shows p-type conductivity, and the optical absorption coefficient and the band gap of the Cu2ZnSnS4 film prepared in this experiment are suitable for fabricating a thin film solar cell.  相似文献   

14.
Nickel-doped ZnO (Zn1−xNixO) have been produced using rf magnetron sputtering. X-ray diffraction measurements revealed that nickel atoms were successfully incorporated into ZnO host matrix without forming any detectable secondary phase. Ni 2p core-level photoemission spectroscopy confirmed this result and suggested Ni has a chemical valence of 2+. According to the magnetization measurements, no ferromagnetic but paramagnetic behavior was found for Zn0.86Ni0.14O. We studied the electronic structure of Zn0.86Ni0.14O by valence-band photoemission spectroscopy. The spectra demonstrate a structure at ∼2 eV below the Fermi energy EF, which is of Ni 3d origin. No emission was found at EF, suggesting the insulating nature of the film.  相似文献   

15.
在27keV Ar+离子轰击时,用收集膜技术结合俄歇谱仪(AES),研究了三元合金Cu76Ni15Sn9系统的择优溅射行为。同时使用扫描电子显微镜(SEM)与电子探针微分析(EPMA).观察了靶点表面形貌变化并测定了形貌特征微区的合金组份原子的相对百分浓度。结果表明,Cu原子较Ni原子、Ni原子较Sn原子,在所测定范围(0─60°)内择优发射。最后讨论了靶点表面形貌特征和“元素局域富集”现象对择优溅射过程的影响。 关键词:  相似文献   

16.
Cluster-size-dependent binding energy (BE) shifts of Ni 2p3/2 spectra in Ni clusters with respect to bulk Ni metal have been studied as a function of Ni coverage on clean rutile TiO2(0 0 1) and TiO2(1 1 0) surfaces at room temperature. As a common method to distinguish initial and final state contributions to the core-level binding energy shifts in clusters, Auger parameter (AP) analysis of photoelectron spectra has been employed and reveals an obvious initial state contribution at the coverage of 0.5 monolayers (ML). From a comparison of results for TiO2(0 0 1) and (1 1 0) surfaces, the initial state effect is demonstrated to be strongly affected by the substrate and is assigned to a combination of eigenvalue shift in surface core-level shift (SCLS) and charge transfer between the metal clusters and substrates. The Ni 2p3/2 BE’s of atomic Ni on TiO2(0 0 1) and (1 1 0) surfaces are deduced to be 853.69 and 853.55 eV, respectively, from an extrapolation of the experimental BE curves to zero Ni coverage. Compared with atomic Ni in gas phase, relaxation shifts of 7.34 and 7.48 eV are obtained on TiO2(0 0 1) and (1 1 0) surfaces, respectively. These values are very close to the relaxation shift of 7.3 eV due to d electron screening, indicating d-like screening effects from the TiO2 substrates after Ni 2p photoionization.  相似文献   

17.
Zn-Ni-Al2O3 nanocomposite coating, which was fabricated by eletrodeposition technique with the aid of ultrasound, was investigated by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis and X-ray photoelectron spectroscopy (XPS). The results reveal that 7.2 wt.% nano-alumina particles uniformly dispersed in the matrix of the composite coating. The XPS analyses demonstrate that the outermost layer of Zn-Ni-Al2O3 coating was composed of nano-alumina and Zn(OH)2, while the transition layer between the outermost layer and the Zn-Ni matrix consisted of nano-alumina, metallic Zn, ZnO and metallic Ni. In order to investigate the influences of ultrasonic agitation and the incorporation of nano-alumina on the composition and surface structure of Zn-Ni matrix, the comparison studies of Zn-Ni-Al2O3 nanocomposite coating with Zn-Ni coatings fabricated with and without ultrasound were conducted. The results indicate that ultrasonic agitation resulted in a decrease of Ni content in the Zn-Ni matrix and an increase of the thickness of surface oxide layer; while the incorporation of nano-α-Al2O3 increased the Ni content in the Zn-Ni matrix.  相似文献   

18.
The present study is focused on the influence of vacuum thermal treatment on surface/interface electronic properties of Si/Ge multilayer structures (MLS) characterized using X-ray photoelectron spectroscopy (XPS) technique. Desired [Si(5 nm)/Ge(5 nm)]×10 MLS were prepared using electron beam evaporation technique under ultra high vacuum (UHV) conditions. The core-level XPS spectra of as-deposited as well as multilayer samples annealed at different temperatures such as 100 °C, 150 °C and 200 °C for 1 h show substantial reduction in Ge 2p peak integrated intensity, whereas peak intensity of Si 2p remains almost constant. The complete interdiffusion took place after annealing the sample at 200 °C for 5 h as confirmed from depth profiling of annealed MLS. The asymmetric behaviour in intensity patterns of Si and Ge with annealing was attributed to faster interdiffusion of Si into Ge layer. However, another set of experiments on these MLS annealed at 500 °C suggests that interdiffusion can also be studied by annealing the system at higher temperature for relatively shorter time duration.  相似文献   

19.
A series of samples ZnxFe3−xO4 have been prepared by the chemical coprecipitation technique and characterized by X-ray diffraction (XRD), vibrating sample magnetometry (VSM) and X-ray photoelectron spectroscopy (XPS). XRD demonstrates all the samples of ZnxFe3−xO4 have a spinel structure same as Fe3O4. The magnetic hysteresis loops of ZnxFe3−xO4 obtained from VSM indicate that the saturation magnetization has a maximum when x is ∼1/3. The chemical states of Fe atoms and Zn atoms in zinc ferrites have been measured using XPS and Auger electron spectroscopy (AES). The Fe 2p core-level XPS spectra and Zn L3M45M45 Auger peaks have been analyzed and the results have been discussed in correlation with the samples’ magnetic properties. These results suggest most of Zn atoms occupy the tetrahedral sites and a small amount of them occupy the octahedral sites.  相似文献   

20.
《Applied Surface Science》1987,29(2):194-222
Native oxide and in-situ prepared, dry oxides of Ni36Fe32Cr14P12B6 metallic glass have been investigated using angle resolved X-ray photoelectron spectroscopy (XPS or ESCA). The core-level binding energies of the various constituents of clean and oxidized samples have been determined accurately. A qualitative as well as quantitative estimation of elements in the outermost surface layers with and without oxidation is given by comparing XPS results obtained at normal and grazing emission angles. Stepwise oxidation leads to growing thickness of the surface oxide layer and to identification of different oxide species. The maximum thickness of the in-situ prepared oxide was determined as 3.5 nm compared to 4.5 nm for the native oxide. The sequence of oxidation is found to be Cr, Fe, B, P and Ni, but only some of the P and Ni atoms in the surface region are oxidized. The oxidation reaction induces diffusion of the constituents in the surface region as monitored by the change of relative intensities of the various peaks. For instance, P and especially Ni are strongly depleted in the oxide layer whereas Fe, Cr, and especially B are enriched. Differences between native and dry oxide have been observed and are discussed. The main difference is the abundance of carbon and oxygen containing species other than oxides in the native layer. Ar+ sputtering of the dry oxide layer leads to stochiometric changes in the surface region which are due to preferential sputtering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号